Ingresa un problema...
Álgebra Ejemplos
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Convierte la desigualdad en una ecuación.
Paso 3
Suma a ambos lados de la ecuación.
Paso 4
Paso 4.1
Reordena los términos.
Paso 4.2
Factoriza el máximo común divisor de cada grupo.
Paso 4.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.4
Reescribe como .
Paso 4.5
Factoriza.
Paso 4.5.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 4.5.2
Elimina los paréntesis innecesarios.
Paso 5
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6
Paso 6.1
Establece igual a .
Paso 6.2
Resuelve en .
Paso 6.2.1
Suma a ambos lados de la ecuación.
Paso 6.2.2
Divide cada término en por y simplifica.
Paso 6.2.2.1
Divide cada término en por .
Paso 6.2.2.2
Simplifica el lado izquierdo.
Paso 6.2.2.2.1
Cancela el factor común de .
Paso 6.2.2.2.1.1
Cancela el factor común.
Paso 6.2.2.2.1.2
Divide por .
Paso 7
Paso 7.1
Establece igual a .
Paso 7.2
Resta de ambos lados de la ecuación.
Paso 8
Paso 8.1
Establece igual a .
Paso 8.2
Suma a ambos lados de la ecuación.
Paso 9
La solución final comprende todos los valores que hacen verdadera.
Paso 10
Usa cada raíz para crear intervalos de prueba.
Paso 11
Paso 11.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.1.2
Reemplaza con en la desigualdad original.
Paso 11.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 11.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.2.2
Reemplaza con en la desigualdad original.
Paso 11.2.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.3.2
Reemplaza con en la desigualdad original.
Paso 11.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 11.4
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.4.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.4.2
Reemplaza con en la desigualdad original.
Paso 11.4.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.5
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Paso 12
La solución consiste en todos los intervalos verdaderos.
o
Paso 13
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 14