Álgebra Ejemplos

حل من أجل y 1-2/(3y)=6/15
Paso 1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.2.2.1
Factoriza de .
Paso 1.2.2.2
Cancela el factor común.
Paso 1.2.2.3
Reescribe la expresión.
Paso 1.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.4
Combina y .
Paso 1.5
Combina los numeradores sobre el denominador común.
Paso 1.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.6.1
Multiplica por .
Paso 1.6.2
Resta de .
Paso 1.7
Mueve el negativo al frente de la fracción.
Paso 2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 2.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.4
Como no tiene factores además de y .
es un número primo
Paso 2.5
Como no tiene factores además de y .
es un número primo
Paso 2.6
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 2.7
Multiplica por .
Paso 2.8
El factor para es en sí mismo.
ocurre vez.
Paso 2.9
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.10
El MCM para es la parte numérica multiplicada por la parte variable.
Paso 3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.2
Factoriza de .
Paso 3.2.1.3
Cancela el factor común.
Paso 3.2.1.4
Reescribe la expresión.
Paso 3.2.2
Multiplica por .
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.3.1.2
Factoriza de .
Paso 3.3.1.3
Cancela el factor común.
Paso 3.3.1.4
Reescribe la expresión.
Paso 3.3.2
Multiplica por .
Paso 4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 4.1
Reescribe la ecuación como .
Paso 4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.2.1
Divide cada término en por .
Paso 4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.2.1.1
Cancela el factor común.
Paso 4.2.2.1.2
Divide por .
Paso 4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Forma de número mixto: