Ingresa un problema...
Álgebra Ejemplos
Paso 1
Convierte la desigualdad en una ecuación.
Paso 2
Paso 2.1
Factoriza de .
Paso 2.1.1
Factoriza de .
Paso 2.1.2
Factoriza de .
Paso 2.1.3
Factoriza de .
Paso 2.1.4
Factoriza de .
Paso 2.1.5
Factoriza de .
Paso 2.2
Factoriza con la regla del cuadrado perfecto.
Paso 2.2.1
Reescribe como .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 2.2.4
Reescribe el polinomio.
Paso 2.2.5
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 3
Paso 3.1
Divide cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Cancela el factor común de .
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Divide por .
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Divide por .
Paso 4
Establece igual a .
Paso 5
Paso 5.1
Suma a ambos lados de la ecuación.
Paso 5.2
Divide cada término en por y simplifica.
Paso 5.2.1
Divide cada término en por .
Paso 5.2.2
Simplifica el lado izquierdo.
Paso 5.2.2.1
Cancela el factor común de .
Paso 5.2.2.1.1
Cancela el factor común.
Paso 5.2.2.1.2
Divide por .
Paso 6
Usa cada raíz para crear intervalos de prueba.
Paso 7
Paso 7.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 7.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.1.2
Reemplaza con en la desigualdad original.
Paso 7.1.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 7.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 7.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.2.2
Reemplaza con en la desigualdad original.
Paso 7.2.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 7.3
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Falso
Falso
Falso
Paso 8
Como no hay números que estén dentro del intervalo, esta desigualdad no tiene solución.
No hay solución