Ejemplos

Obtener la inversa
[011142334]011142334
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4234|4234
Paso 1.1.4
Multiply element a11a11 by its cofactor.
0|4234|04234
Paso 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1234|1234
Paso 1.1.6
Multiply element a12a12 by its cofactor.
-1|1234|11234
Paso 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1433|1433
Paso 1.1.8
Multiply element a13a13 by its cofactor.
1|1433|11433
Paso 1.1.9
Add the terms together.
0|4234|-1|1234|+1|1433|0423411234+11433
0|4234|-1|1234|+1|1433|0423411234+11433
Paso 1.2
Multiplica 00 por |4234|4234.
0-1|1234|+1|1433|011234+11433
Paso 1.3
Evalúa |1234|1234.
Toca para ver más pasos...
Paso 1.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1(14-32)+1|1433|01(1432)+11433
Paso 1.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.1.1
Multiplica 44 por 11.
0-1(4-32)+1|1433|01(432)+11433
Paso 1.3.2.1.2
Multiplica -33 por 22.
0-1(4-6)+1|1433|01(46)+11433
0-1(4-6)+1|1433|01(46)+11433
Paso 1.3.2.2
Resta 66 de 44.
0-1-2+1|1433|012+11433
0-1-2+1|1433|012+11433
0-1-2+1|1433|012+11433
Paso 1.4
Evalúa |1433|1433.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1-2+1(13-34)012+1(1334)
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 33 por 11.
0-1-2+1(3-34)012+1(334)
Paso 1.4.2.1.2
Multiplica -33 por 44.
0-1-2+1(3-12)012+1(312)
0-1-2+1(3-12)012+1(312)
Paso 1.4.2.2
Resta 1212 de 33.
0-1-2+1-9012+19
0-1-2+1-9012+19
0-1-2+1-9012+19
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.1.1
Multiplica -11 por -22.
0+2+1-90+2+19
Paso 1.5.1.2
Multiplica -99 por 11.
0+2-90+29
0+2-90+29
Paso 1.5.2
Suma 00 y 22.
2-929
Paso 1.5.3
Resta 99 de 22.
-77
-77
-77
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[011100142010334001]011100142010334001
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Swap R2R2 with R1R1 to put a nonzero entry at 1,11,1.
[142010011100334001]142010011100334001
Paso 4.2
Perform the row operation R3=R3-3R1R3=R33R1 to make the entry at 3,13,1 a 00.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R3=R3-3R1R3=R33R1 to make the entry at 3,13,1 a 00.
[1420100111003-313-344-320-300-311-30]142010011100331334432030031130
Paso 4.2.2
Simplifica R3R3.
[1420100111000-9-20-31]142010011100092031
[1420100111000-9-20-31]142010011100092031
Paso 4.3
Perform the row operation R3=R3+9R2R3=R3+9R2 to make the entry at 3,23,2 a 00.
Toca para ver más pasos...
Paso 4.3.1
Perform the row operation R3=R3+9R2R3=R3+9R2 to make the entry at 3,23,2 a 00.
[1420100111000+90-9+91-2+910+91-3+901+90]1420100111000+909+912+910+913+901+90
Paso 4.3.2
Simplifica R3R3.
[1420100111000079-31]142010011100007931
[1420100111000079-31]142010011100007931
Paso 4.4
Multiply each element of R3R3 by 1717 to make the entry at 3,33,3 a 11.
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of R3R3 by 1717 to make the entry at 3,33,3 a 11.
[14201001110007077797-3717]⎢ ⎢142010011100070777973717⎥ ⎥
Paso 4.4.2
Simplifica R3R3.
[14201001110000197-3717]⎢ ⎢142010011100001973717⎥ ⎥
[14201001110000197-3717]⎢ ⎢142010011100001973717⎥ ⎥
Paso 4.5
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
Toca para ver más pasos...
Paso 4.5.1
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
[1420100-01-01-11-970+370-1700197-3717]⎢ ⎢1420100010111970+37017001973717⎥ ⎥
Paso 4.5.2
Simplifica R2R2.
[142010010-2737-1700197-3717]⎢ ⎢142010010273717001973717⎥ ⎥
[142010010-2737-1700197-3717]⎢ ⎢142010010273717001973717⎥ ⎥
Paso 4.6
Perform the row operation R1=R1-2R3R1=R12R3 to make the entry at 1,31,3 a 00.
Toca para ver más pasos...
Paso 4.6.1
Perform the row operation R1=R1-2R3R1=R12R3 to make the entry at 1,31,3 a 00.
[1-204-202-210-2(97)1-2(-37)0-2(17)010-2737-1700197-3717]⎢ ⎢ ⎢ ⎢12042022102(97)12(37)02(17)010273717001973717⎥ ⎥ ⎥ ⎥
Paso 4.6.2
Simplifica R1R1.
[140-187137-27010-2737-1700197-3717]⎢ ⎢ ⎢14018713727010273717001973717⎥ ⎥ ⎥
[140-187137-27010-2737-1700197-3717]⎢ ⎢ ⎢14018713727010273717001973717⎥ ⎥ ⎥
Paso 4.7
Perform the row operation R1=R1-4R2R1=R14R2 to make the entry at 1,21,2 a 00.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R1=R1-4R2R1=R14R2 to make the entry at 1,21,2 a 00.
[1-404-410-40-187-4(-27)137-4(37)-27-4(-17)010-2737-1700197-3717]⎢ ⎢ ⎢ ⎢1404410401874(27)1374(37)274(17)010273717001973717⎥ ⎥ ⎥ ⎥
Paso 4.7.2
Simplifica R1R1.
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
[100-1071727010-2737-1700197-3717]⎢ ⎢ ⎢1001071727010273717001973717⎥ ⎥ ⎥
Paso 5
The right half of the reduced row echelon form is the inverse.
[-1071727-2737-1797-3717]⎢ ⎢ ⎢1071727273717973717⎥ ⎥ ⎥
Ingresa TU problema
using Amazon.Auth.AccessControlPolicy;
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay