Álgebra lineal Ejemplos
[1450021325411502]⎡⎢
⎢
⎢
⎢⎣1450021325411502⎤⎥
⎥
⎥
⎥⎦
Paso 1
Paso 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|213541502|∣∣
∣∣213541502∣∣
∣∣
Paso 1.4
Multiply element a11a11 by its cofactor.
1|213541502|1∣∣
∣∣213541502∣∣
∣∣
Paso 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|013241102|∣∣
∣∣013241102∣∣
∣∣
Paso 1.6
Multiply element a12a12 by its cofactor.
-4|013241102|−4∣∣
∣∣013241102∣∣
∣∣
Paso 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|023251152|∣∣
∣∣023251152∣∣
∣∣
Paso 1.8
Multiply element a13a13 by its cofactor.
5|023251152|5∣∣
∣∣023251152∣∣
∣∣
Paso 1.9
The minor for a14a14 is the determinant with row 11 and column 44 deleted.
|021254150|∣∣
∣∣021254150∣∣
∣∣
Paso 1.10
Multiply element a14a14 by its cofactor.
0|021254150|0∣∣
∣∣021254150∣∣
∣∣
Paso 1.11
Add the terms together.
1|213541502|-4|013241102|+5|023251152|+0|021254150|1∣∣
∣∣213541502∣∣
∣∣−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0∣∣
∣∣021254150∣∣
∣∣
1|213541502|-4|013241102|+5|023251152|+0|021254150|1∣∣
∣∣213541502∣∣
∣∣−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0∣∣
∣∣021254150∣∣
∣∣
Paso 2
Multiplica 00 por |021254150|∣∣
∣∣021254150∣∣
∣∣.
1|213541502|-4|013241102|+5|023251152|+01∣∣
∣∣213541502∣∣
∣∣−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
Paso 3
Paso 3.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 22 by its cofactor and add.
Paso 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 3.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 3.1.3
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|5152|∣∣∣5152∣∣∣
Paso 3.1.4
Multiply element a12a12 by its cofactor.
-1|5152|−1∣∣∣5152∣∣∣
Paso 3.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2352|∣∣∣2352∣∣∣
Paso 3.1.6
Multiply element a22a22 by its cofactor.
4|2352|4∣∣∣2352∣∣∣
Paso 3.1.7
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2351|∣∣∣2351∣∣∣
Paso 3.1.8
Multiply element a32a32 by its cofactor.
0|2351|0∣∣∣2351∣∣∣
Paso 3.1.9
Add the terms together.
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+01(−1∣∣∣5152∣∣∣+4∣∣∣2352∣∣∣+0∣∣∣2351∣∣∣)−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+01(−1∣∣∣5152∣∣∣+4∣∣∣2352∣∣∣+0∣∣∣2351∣∣∣)−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
Paso 3.2
Multiplica 00 por |2351|∣∣∣2351∣∣∣.
1(-1|5152|+4|2352|+0)-4|013241102|+5|023251152|+01(−1∣∣∣5152∣∣∣+4∣∣∣2352∣∣∣+0)−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
Paso 3.3
Evalúa |5152|∣∣∣5152∣∣∣.
Paso 3.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(-1(5⋅2-5⋅1)+4|2352|+0)-4|013241102|+5|023251152|+01(−1(5⋅2−5⋅1)+4∣∣∣2352∣∣∣+0)−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
Paso 3.3.2
Simplifica el determinante.
Paso 3.3.2.1
Simplifica cada término.
Paso 3.3.2.1.1
Multiplica 55 por 22.
1(-1(10-5⋅1)+4|2352|+0)-4|013241102|+5|023251152|+01(−1(10−5⋅1)+4∣∣∣2352∣∣∣+0)−4∣∣
∣∣013241102∣∣
∣∣+5∣∣
∣∣023251152∣∣
∣∣+0
Paso 3.3.2.1.2
Multiplica -5 por 1.
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+0
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+0
Paso 3.3.2.2
Resta 5 de 10.
1(-1⋅5+4|2352|+0)-4|013241102|+5|023251152|+0
1(-1⋅5+4|2352|+0)-4|013241102|+5|023251152|+0
1(-1⋅5+4|2352|+0)-4|013241102|+5|023251152|+0
Paso 3.4
Evalúa |2352|.
Paso 3.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1(-1⋅5+4(2⋅2-5⋅3)+0)-4|013241102|+5|023251152|+0
Paso 3.4.2
Simplifica el determinante.
Paso 3.4.2.1
Simplifica cada término.
Paso 3.4.2.1.1
Multiplica 2 por 2.
1(-1⋅5+4(4-5⋅3)+0)-4|013241102|+5|023251152|+0
Paso 3.4.2.1.2
Multiplica -5 por 3.
1(-1⋅5+4(4-15)+0)-4|013241102|+5|023251152|+0
1(-1⋅5+4(4-15)+0)-4|013241102|+5|023251152|+0
Paso 3.4.2.2
Resta 15 de 4.
1(-1⋅5+4⋅-11+0)-4|013241102|+5|023251152|+0
1(-1⋅5+4⋅-11+0)-4|013241102|+5|023251152|+0
1(-1⋅5+4⋅-11+0)-4|013241102|+5|023251152|+0
Paso 3.5
Simplifica el determinante.
Paso 3.5.1
Simplifica cada término.
Paso 3.5.1.1
Multiplica -1 por 5.
1(-5+4⋅-11+0)-4|013241102|+5|023251152|+0
Paso 3.5.1.2
Multiplica 4 por -11.
1(-5-44+0)-4|013241102|+5|023251152|+0
1(-5-44+0)-4|013241102|+5|023251152|+0
Paso 3.5.2
Resta 44 de -5.
1(-49+0)-4|013241102|+5|023251152|+0
Paso 3.5.3
Suma -49 y 0.
1⋅-49-4|013241102|+5|023251152|+0
1⋅-49-4|013241102|+5|023251152|+0
1⋅-49-4|013241102|+5|023251152|+0
Paso 4
Paso 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|4102|
Paso 4.1.4
Multiply element a11 by its cofactor.
0|4102|
Paso 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Paso 4.1.6
Multiply element a12 by its cofactor.
-1|2112|
Paso 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2410|
Paso 4.1.8
Multiply element a13 by its cofactor.
3|2410|
Paso 4.1.9
Add the terms together.
1⋅-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
1⋅-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
Paso 4.2
Multiplica 0 por |4102|.
1⋅-49-4(0-1|2112|+3|2410|)+5|023251152|+0
Paso 4.3
Evalúa |2112|.
Paso 4.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-49-4(0-1(2⋅2-1⋅1)+3|2410|)+5|023251152|+0
Paso 4.3.2
Simplifica el determinante.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Multiplica 2 por 2.
1⋅-49-4(0-1(4-1⋅1)+3|2410|)+5|023251152|+0
Paso 4.3.2.1.2
Multiplica -1 por 1.
1⋅-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
1⋅-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
Paso 4.3.2.2
Resta 1 de 4.
1⋅-49-4(0-1⋅3+3|2410|)+5|023251152|+0
1⋅-49-4(0-1⋅3+3|2410|)+5|023251152|+0
1⋅-49-4(0-1⋅3+3|2410|)+5|023251152|+0
Paso 4.4
Evalúa |2410|.
Paso 4.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-49-4(0-1⋅3+3(2⋅0-1⋅4))+5|023251152|+0
Paso 4.4.2
Simplifica el determinante.
Paso 4.4.2.1
Simplifica cada término.
Paso 4.4.2.1.1
Multiplica 2 por 0.
1⋅-49-4(0-1⋅3+3(0-1⋅4))+5|023251152|+0
Paso 4.4.2.1.2
Multiplica -1 por 4.
1⋅-49-4(0-1⋅3+3(0-4))+5|023251152|+0
1⋅-49-4(0-1⋅3+3(0-4))+5|023251152|+0
Paso 4.4.2.2
Resta 4 de 0.
1⋅-49-4(0-1⋅3+3⋅-4)+5|023251152|+0
1⋅-49-4(0-1⋅3+3⋅-4)+5|023251152|+0
1⋅-49-4(0-1⋅3+3⋅-4)+5|023251152|+0
Paso 4.5
Simplifica el determinante.
Paso 4.5.1
Simplifica cada término.
Paso 4.5.1.1
Multiplica -1 por 3.
1⋅-49-4(0-3+3⋅-4)+5|023251152|+0
Paso 4.5.1.2
Multiplica 3 por -4.
1⋅-49-4(0-3-12)+5|023251152|+0
1⋅-49-4(0-3-12)+5|023251152|+0
Paso 4.5.2
Resta 3 de 0.
1⋅-49-4(-3-12)+5|023251152|+0
Paso 4.5.3
Resta 12 de -3.
1⋅-49-4⋅-15+5|023251152|+0
1⋅-49-4⋅-15+5|023251152|+0
1⋅-49-4⋅-15+5|023251152|+0
Paso 5
Paso 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5152|
Paso 5.1.4
Multiply element a11 by its cofactor.
0|5152|
Paso 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Paso 5.1.6
Multiply element a12 by its cofactor.
-2|2112|
Paso 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2515|
Paso 5.1.8
Multiply element a13 by its cofactor.
3|2515|
Paso 5.1.9
Add the terms together.
1⋅-49-4⋅-15+5(0|5152|-2|2112|+3|2515|)+0
1⋅-49-4⋅-15+5(0|5152|-2|2112|+3|2515|)+0
Paso 5.2
Multiplica 0 por |5152|.
1⋅-49-4⋅-15+5(0-2|2112|+3|2515|)+0
Paso 5.3
Evalúa |2112|.
Paso 5.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-49-4⋅-15+5(0-2(2⋅2-1⋅1)+3|2515|)+0
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Multiplica 2 por 2.
1⋅-49-4⋅-15+5(0-2(4-1⋅1)+3|2515|)+0
Paso 5.3.2.1.2
Multiplica -1 por 1.
1⋅-49-4⋅-15+5(0-2(4-1)+3|2515|)+0
1⋅-49-4⋅-15+5(0-2(4-1)+3|2515|)+0
Paso 5.3.2.2
Resta 1 de 4.
1⋅-49-4⋅-15+5(0-2⋅3+3|2515|)+0
1⋅-49-4⋅-15+5(0-2⋅3+3|2515|)+0
1⋅-49-4⋅-15+5(0-2⋅3+3|2515|)+0
Paso 5.4
Evalúa |2515|.
Paso 5.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-49-4⋅-15+5(0-2⋅3+3(2⋅5-1⋅5))+0
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Multiplica 2 por 5.
1⋅-49-4⋅-15+5(0-2⋅3+3(10-1⋅5))+0
Paso 5.4.2.1.2
Multiplica -1 por 5.
1⋅-49-4⋅-15+5(0-2⋅3+3(10-5))+0
1⋅-49-4⋅-15+5(0-2⋅3+3(10-5))+0
Paso 5.4.2.2
Resta 5 de 10.
1⋅-49-4⋅-15+5(0-2⋅3+3⋅5)+0
1⋅-49-4⋅-15+5(0-2⋅3+3⋅5)+0
1⋅-49-4⋅-15+5(0-2⋅3+3⋅5)+0
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Simplifica cada término.
Paso 5.5.1.1
Multiplica -2 por 3.
1⋅-49-4⋅-15+5(0-6+3⋅5)+0
Paso 5.5.1.2
Multiplica 3 por 5.
1⋅-49-4⋅-15+5(0-6+15)+0
1⋅-49-4⋅-15+5(0-6+15)+0
Paso 5.5.2
Resta 6 de 0.
1⋅-49-4⋅-15+5(-6+15)+0
Paso 5.5.3
Suma -6 y 15.
1⋅-49-4⋅-15+5⋅9+0
1⋅-49-4⋅-15+5⋅9+0
1⋅-49-4⋅-15+5⋅9+0
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica -49 por 1.
-49-4⋅-15+5⋅9+0
Paso 6.1.2
Multiplica -4 por -15.
-49+60+5⋅9+0
Paso 6.1.3
Multiplica 5 por 9.
-49+60+45+0
-49+60+45+0
Paso 6.2
Suma -49 y 60.
11+45+0
Paso 6.3
Suma 11 y 45.
56+0
Paso 6.4
Suma 56 y 0.
56
56