Álgebra lineal Ejemplos
⎡⎢
⎢
⎢
⎢⎣0301430312241234⎤⎥
⎥
⎥
⎥⎦
Paso 1
Paso 1.1
Consider the corresponding sign chart.
∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Paso 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
∣∣
∣∣303224234∣∣
∣∣
Paso 1.4
Multiply element a11 by its cofactor.
0∣∣
∣∣303224234∣∣
∣∣
Paso 1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
∣∣
∣∣403124134∣∣
∣∣
Paso 1.6
Multiply element a12 by its cofactor.
−3∣∣
∣∣403124134∣∣
∣∣
Paso 1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
∣∣
∣∣433124124∣∣
∣∣
Paso 1.8
Multiply element a13 by its cofactor.
0∣∣
∣∣433124124∣∣
∣∣
Paso 1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
∣∣
∣∣430122123∣∣
∣∣
Paso 1.10
Multiply element a14 by its cofactor.
−1∣∣
∣∣430122123∣∣
∣∣
Paso 1.11
Add the terms together.
0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
Paso 2
Multiplica 0 por ∣∣
∣∣303224234∣∣
∣∣.
0−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
Paso 3
Multiplica 0 por ∣∣
∣∣433124124∣∣
∣∣.
0−3∣∣
∣∣403124134∣∣
∣∣+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4
Paso 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 4.1.1
Consider the corresponding sign chart.
∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Paso 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
∣∣∣2434∣∣∣
Paso 4.1.4
Multiply element a11 by its cofactor.
4∣∣∣2434∣∣∣
Paso 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
∣∣∣1414∣∣∣
Paso 4.1.6
Multiply element a12 by its cofactor.
0∣∣∣1414∣∣∣
Paso 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
∣∣∣1213∣∣∣
Paso 4.1.8
Multiply element a13 by its cofactor.
3∣∣∣1213∣∣∣
Paso 4.1.9
Add the terms together.
0−3(4∣∣∣2434∣∣∣+0∣∣∣1414∣∣∣+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4∣∣∣2434∣∣∣+0∣∣∣1414∣∣∣+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.2
Multiplica 0 por ∣∣∣1414∣∣∣.
0−3(4∣∣∣2434∣∣∣+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3
Evalúa ∣∣∣2434∣∣∣.
Paso 4.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−3(4(2⋅4−3⋅4)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2
Simplifica el determinante.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Multiplica 2 por 4.
0−3(4(8−3⋅4)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2.1.2
Multiplica −3 por 4.
0−3(4(8−12)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4(8−12)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2.2
Resta 12 de 8.
0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4
Evalúa ∣∣∣1213∣∣∣.
Paso 4.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−3(4⋅−4+0+3(1⋅3−1⋅2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2
Simplifica el determinante.
Paso 4.4.2.1
Simplifica cada término.
Paso 4.4.2.1.1
Multiplica 3 por 1.
0−3(4⋅−4+0+3(3−1⋅2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2.1.2
Multiplica −1 por 2.
0−3(4⋅−4+0+3(3−2))+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4⋅−4+0+3(3−2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2.2
Resta 2 de 3.
0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5
Simplifica el determinante.
Paso 4.5.1
Simplifica cada término.
Paso 4.5.1.1
Multiplica 4 por −4.
0−3(−16+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.1.2
Multiplica 3 por 1.
0−3(−16+0+3)+0−1∣∣
∣∣430122123∣∣
∣∣
0−3(−16+0+3)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.2
Suma −16 y 0.
0−3(−16+3)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.3
Suma −16 y 3.
0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 5
Paso 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Paso 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
∣∣∣2223∣∣∣
Paso 5.1.4
Multiply element a11 by its cofactor.
4∣∣∣2223∣∣∣
Paso 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
∣∣∣1213∣∣∣
Paso 5.1.6
Multiply element a12 by its cofactor.
−3∣∣∣1213∣∣∣
Paso 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
∣∣∣1212∣∣∣
Paso 5.1.8
Multiply element a13 by its cofactor.
0∣∣∣1212∣∣∣
Paso 5.1.9
Add the terms together.
0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0∣∣∣1212∣∣∣)
0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0∣∣∣1212∣∣∣)
Paso 5.2
Multiplica 0 por ∣∣∣1212∣∣∣.
0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0)
Paso 5.3
Evalúa ∣∣∣2223∣∣∣.
Paso 5.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−3⋅−13+0−1(4(2⋅3−2⋅2)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Multiplica 2 por 3.
0−3⋅−13+0−1(4(6−2⋅2)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2.1.2
Multiplica −2 por 2.
0−3⋅−13+0−1(4(6−4)−3∣∣∣1213∣∣∣+0)
0−3⋅−13+0−1(4(6−4)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2.2
Resta 4 de 6.
0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
Paso 5.4
Evalúa ∣∣∣1213∣∣∣.
Paso 5.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−3⋅−13+0−1(4⋅2−3(1⋅3−1⋅2)+0)
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Multiplica 3 por 1.
0−3⋅−13+0−1(4⋅2−3(3−1⋅2)+0)
Paso 5.4.2.1.2
Multiplica −1 por 2.
0−3⋅−13+0−1(4⋅2−3(3−2)+0)
0−3⋅−13+0−1(4⋅2−3(3−2)+0)
Paso 5.4.2.2
Resta 2 de 3.
0−3⋅−13+0−1(4⋅2−3⋅1+0)
0−3⋅−13+0−1(4⋅2−3⋅1+0)
0−3⋅−13+0−1(4⋅2−3⋅1+0)
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Simplifica cada término.
Paso 5.5.1.1
Multiplica 4 por 2.
0−3⋅−13+0−1(8−3⋅1+0)
Paso 5.5.1.2
Multiplica −3 por 1.
0−3⋅−13+0−1(8−3+0)
0−3⋅−13+0−1(8−3+0)
Paso 5.5.2
Resta 3 de 8.
0−3⋅−13+0−1(5+0)
Paso 5.5.3
Suma 5 y 0.
0−3⋅−13+0−1⋅5
0−3⋅−13+0−1⋅5
0−3⋅−13+0−1⋅5
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica −3 por −13.
0+39+0−1⋅5
Paso 6.1.2
Multiplica −1 por 5.
0+39+0−5
0+39+0−5
Paso 6.2
Suma 0 y 39.
39+0−5
Paso 6.3
Suma 39 y 0.
39−5
Paso 6.4
Resta 5 de 39.
34
34