Álgebra lineal Ejemplos
S([abc])=[a-b-ca-b-ca-b+c]
Paso 1
El núcleo de una transformación es un vector que hace que la transformación sea igual al vector nulo (la imagen previa de la transformación).
[a-b-ca-b-ca-b+c]=0
Paso 2
Crea un sistema de ecuaciones a partir de la ecuación vectorial.
a-b-c=0
a-b-c=0
a-b+c=0
Paso 3
Write the system as a matrix.
[1-1-101-1-101-110]
Paso 4
Paso 4.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Paso 4.1.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-1-101-1-1+1-1+10-01-110]
Paso 4.1.2
Simplifica R2.
[1-1-1000001-110]
[1-1-1000001-110]
Paso 4.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Paso 4.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-1-1000001-1-1+11+10-0]
Paso 4.2.2
Simplifica R3.
[1-1-1000000020]
[1-1-1000000020]
Paso 4.3
Swap R3 with R2 to put a nonzero entry at 2,3.
[1-1-1000200000]
Paso 4.4
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
Paso 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
[1-1-10020222020000]
Paso 4.4.2
Simplifica R2.
[1-1-1000100000]
[1-1-1000100000]
Paso 4.5
Perform the row operation R1=R1+R2 to make the entry at 1,3 a 0.
Paso 4.5.1
Perform the row operation R1=R1+R2 to make the entry at 1,3 a 0.
[1+0-1+0-1+1⋅10+000100000]
Paso 4.5.2
Simplifica R1.
[1-10000100000]
[1-10000100000]
[1-10000100000]
Paso 5
Use the result matrix to declare the final solution to the system of equations.
a-b=0
c=0
0=0
Paso 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[bb0]
Paso 7
Write the solution as a linear combination of vectors.
[abc]=b[110]
Paso 8
Write as a solution set.
{b[110]|b∈R}
Paso 9
The solution is the set of vectors created from the free variables of the system.
{[110]}
Paso 10
El núcleo de S es el subespacio {[110]}.
K(S)={[110]}