Álgebra lineal Ejemplos
Paso 1
Establece la fórmula para obtener la ecuación característica .
Paso 2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 3
Paso 3.1
Sustituye por .
Paso 3.2
Sustituye por .
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Multiplica por cada elemento de la matriz.
Paso 4.1.2
Simplifica cada elemento de la matriz.
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Multiplica .
Paso 4.1.2.2.1
Multiplica por .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.3
Multiplica .
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Multiplica por .
Paso 4.2
Suma los elementos correspondientes.
Paso 4.3
Simplifica cada elemento.
Paso 4.3.1
Suma y .
Paso 4.3.2
Suma y .
Paso 5
Paso 5.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.2
Simplifica el determinante.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.2.1.1.1
Aplica la propiedad distributiva.
Paso 5.2.1.1.2
Aplica la propiedad distributiva.
Paso 5.2.1.1.3
Aplica la propiedad distributiva.
Paso 5.2.1.2
Simplifica y combina los términos similares.
Paso 5.2.1.2.1
Simplifica cada término.
Paso 5.2.1.2.1.1
Multiplica por .
Paso 5.2.1.2.1.2
Multiplica por .
Paso 5.2.1.2.1.3
Multiplica por .
Paso 5.2.1.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.1.2.1.5
Multiplica por sumando los exponentes.
Paso 5.2.1.2.1.5.1
Mueve .
Paso 5.2.1.2.1.5.2
Multiplica por .
Paso 5.2.1.2.1.6
Multiplica por .
Paso 5.2.1.2.1.7
Multiplica por .
Paso 5.2.1.2.2
Resta de .
Paso 5.2.1.3
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
Reordena y .