Matemática discreta Ejemplos

[314121010]314121010
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|1421|1421
Paso 1.1.4
Multiply element a31a31 by its cofactor.
0|1421|01421
Paso 1.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3411|3411
Paso 1.1.6
Multiply element a32a32 by its cofactor.
-1|3411|13411
Paso 1.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3112|3112
Paso 1.1.8
Multiply element a33a33 by its cofactor.
0|3112|03112
Paso 1.1.9
Add the terms together.
0|1421|-1|3411|+0|3112|0142113411+03112
0|1421|-1|3411|+0|3112|0142113411+03112
Paso 1.2
Multiplica 00 por |1421|1421.
0-1|3411|+0|3112|013411+03112
Paso 1.3
Multiplica 00 por |3112|3112.
0-1|3411|+0013411+0
Paso 1.4
Evalúa |3411|3411.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1(31-14)+001(3114)+0
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 33 por 11.
0-1(3-14)+001(314)+0
Paso 1.4.2.1.2
Multiplica -11 por 44.
0-1(3-4)+001(34)+0
0-1(3-4)+001(34)+0
Paso 1.4.2.2
Resta 44 de 33.
0-1-1+0011+0
0-1-1+0011+0
0-1-1+0011+0
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Multiplica -11 por -11.
0+1+00+1+0
Paso 1.5.2
Suma 00 y 11.
1+01+0
Paso 1.5.3
Suma 11 y 00.
11
11
11
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[314100121010010001]314100121010010001
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
Toca para ver más pasos...
Paso 4.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[331343130303121010010001]⎢ ⎢331343130303121010010001⎥ ⎥
Paso 4.1.2
Simplifica R1R1.
[113431300121010010001]⎢ ⎢113431300121010010001⎥ ⎥
[113431300121010010001]⎢ ⎢113431300121010010001⎥ ⎥
Paso 4.2
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
[1134313001-12-131-430-131-00-0010001]⎢ ⎢113431300112131430131000010001⎥ ⎥
Paso 4.2.2
Simplifica R2R2.
[113431300053-13-1310010001]⎢ ⎢113431300053131310010001⎥ ⎥
[113431300053-13-1310010001]⎢ ⎢113431300053131310010001⎥ ⎥
Paso 4.3
Multiply each element of R2R2 by 3535 to make the entry at 2,22,2 a 11.
Toca para ver más pasos...
Paso 4.3.1
Multiply each element of R2R2 by 3535 to make the entry at 2,22,2 a 11.
[113431300350355335(-13)35(-13)351350010001]⎢ ⎢ ⎢113431300350355335(13)35(13)351350010001⎥ ⎥ ⎥
Paso 4.3.2
Simplifica R2R2.
[11343130001-15-15350010001]⎢ ⎢113431300011515350010001⎥ ⎥
[11343130001-15-15350010001]⎢ ⎢113431300011515350010001⎥ ⎥
Paso 4.4
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
Toca para ver más pasos...
Paso 4.4.1
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
[11343130001-15-153500-01-10+150+150-351-0]⎢ ⎢ ⎢11343130001151535000110+150+1503510⎥ ⎥ ⎥
Paso 4.4.2
Simplifica R3.
[11343130001-15-15350001515-351]
[11343130001-15-15350001515-351]
Paso 4.5
Multiply each element of R3 by 5 to make the entry at 3,3 a 1.
Toca para ver más pasos...
Paso 4.5.1
Multiply each element of R3 by 5 to make the entry at 3,3 a 1.
[11343130001-15-1535050505(15)5(15)5(-35)51]
Paso 4.5.2
Simplifica R3.
[11343130001-15-153500011-35]
[11343130001-15-153500011-35]
Paso 4.6
Perform the row operation R2=R2+15R3 to make the entry at 2,3 a 0.
Toca para ver más pasos...
Paso 4.6.1
Perform the row operation R2=R2+15R3 to make the entry at 2,3 a 0.
[1134313000+1501+150-15+151-15+15135+15-30+1550011-35]
Paso 4.6.2
Simplifica R2.
[1134313000100010011-35]
[1134313000100010011-35]
Paso 4.7
Perform the row operation R1=R1-43R3 to make the entry at 1,3 a 0.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R1=R1-43R3 to make the entry at 1,3 a 0.
[1-43013-43043-43113-4310-43-30-4350100010011-35]
Paso 4.7.2
Simplifica R1.
[1130-14-2030100010011-35]
[1130-14-2030100010011-35]
Paso 4.8
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
Toca para ver más pasos...
Paso 4.8.1
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
[1-13013-1310-130-1-1304-130-203-1310100010011-35]
Paso 4.8.2
Simplifica R1.
[100-14-70100010011-35]
[100-14-70100010011-35]
[100-14-70100010011-35]
Paso 5
The right half of the reduced row echelon form is the inverse.
[-14-70011-35]
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay