Matemática discreta Ejemplos

[221431201]221431201
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 22 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4121|4121
Paso 1.1.4
Multiply element a12a12 by its cofactor.
-2|4121|24121
Paso 1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2121|2121
Paso 1.1.6
Multiply element a22a22 by its cofactor.
3|2121|32121
Paso 1.1.7
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2141|2141
Paso 1.1.8
Multiply element a32a32 by its cofactor.
0|2141|02141
Paso 1.1.9
Add the terms together.
-2|4121|+3|2121|+0|2141|24121+32121+02141
-2|4121|+3|2121|+0|2141|24121+32121+02141
Paso 1.2
Multiplica 00 por |2141|2141.
-2|4121|+3|2121|+024121+32121+0
Paso 1.3
Evalúa |4121|4121.
Toca para ver más pasos...
Paso 1.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
-2(41-21)+3|2121|+02(4121)+32121+0
Paso 1.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.1.1
Multiplica 44 por 11.
-2(4-21)+3|2121|+02(421)+32121+0
Paso 1.3.2.1.2
Multiplica -22 por 11.
-2(4-2)+3|2121|+02(42)+32121+0
-2(4-2)+3|2121|+02(42)+32121+0
Paso 1.3.2.2
Resta 22 de 44.
-22+3|2121|+022+32121+0
-22+3|2121|+022+32121+0
-22+3|2121|+022+32121+0
Paso 1.4
Evalúa |2121|2121.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
-22+3(21-21)+022+3(2121)+0
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 22 por 11.
-22+3(2-21)+022+3(221)+0
Paso 1.4.2.1.2
Multiplica -22 por 11.
-22+3(2-2)+022+3(22)+0
-22+3(2-2)+022+3(22)+0
Paso 1.4.2.2
Resta 22 de 22.
-22+30+022+30+0
-22+30+022+30+0
-22+30+022+30+0
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.1.1
Multiplica -22 por 22.
-4+30+04+30+0
Paso 1.5.1.2
Multiplica 33 por 00.
-4+0+04+0+0
-4+0+04+0+0
Paso 1.5.2
Suma -44 y 00.
-4+04+0
Paso 1.5.3
Suma -44 y 00.
-44
-44
-44
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[221100431010201001]221100431010201001
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Toca para ver más pasos...
Paso 4.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[222212120202431010201001]⎢ ⎢222212120202431010201001⎥ ⎥
Paso 4.1.2
Simplifica R1R1.
[11121200431010201001]⎢ ⎢11121200431010201001⎥ ⎥
[11121200431010201001]⎢ ⎢11121200431010201001⎥ ⎥
Paso 4.2
Perform the row operation R2=R2-4R1R2=R24R1 to make the entry at 2,12,1 a 00.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R2=R2-4R1R2=R24R1 to make the entry at 2,12,1 a 00.
[111212004-413-411-4(12)0-4(12)1-400-40201001]⎢ ⎢1112120044134114(12)04(12)140040201001⎥ ⎥
Paso 4.2.2
Simplifica R2R2.
[111212000-1-1-210201001]⎢ ⎢11121200011210201001⎥ ⎥
[111212000-1-1-210201001]⎢ ⎢11121200011210201001⎥ ⎥
Paso 4.3
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
Toca para ver más pasos...
Paso 4.3.1
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
[111212000-1-1-2102-210-211-2(12)0-2(12)0-201-20]
Paso 4.3.2
Simplifica R3.
[111212000-1-1-2100-20-101]
[111212000-1-1-2100-20-101]
Paso 4.4
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[11121200-0--1--1--2-11-00-20-101]
Paso 4.4.2
Simplifica R2.
[111212000112-100-20-101]
[111212000112-100-20-101]
Paso 4.5
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
Toca para ver más pasos...
Paso 4.5.1
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
[111212000112-100+20-2+210+21-1+220+2-11+20]
Paso 4.5.2
Simplifica R3.
[111212000112-100023-21]
[111212000112-100023-21]
Paso 4.6
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
Toca para ver más pasos...
Paso 4.6.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
[111212000112-1002022232-2212]
Paso 4.6.2
Simplifica R3.
[111212000112-1000132-112]
[111212000112-1000132-112]
Paso 4.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[111212000-01-01-12-32-1+10-1200132-112]
Paso 4.7.2
Simplifica R2.
[11121200010120-1200132-112]
[11121200010120-1200132-112]
Paso 4.8
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
Toca para ver más pasos...
Paso 4.8.1
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
[1-1201-12012-12112-12320-12-10-1212010120-1200132-112]
Paso 4.8.2
Simplifica R1.
[110-1412-14010120-1200132-112]
[110-1412-14010120-1200132-112]
Paso 4.9
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Toca para ver más pasos...
Paso 4.9.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-0-14-1212-0-14+12010120-1200132-112]
Paso 4.9.2
Simplifica R1.
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
Paso 5
The right half of the reduced row echelon form is the inverse.
[-341214120-1232-112]
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay