Matemática discreta Ejemplos
[0301430312241234]⎡⎢
⎢
⎢
⎢⎣0301430312241234⎤⎥
⎥
⎥
⎥⎦
Paso 1
Paso 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|303224234|∣∣
∣∣303224234∣∣
∣∣
Paso 1.4
Multiply element a11a11 by its cofactor.
0|303224234|0∣∣
∣∣303224234∣∣
∣∣
Paso 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|403124134|∣∣
∣∣403124134∣∣
∣∣
Paso 1.6
Multiply element a12a12 by its cofactor.
-3|403124134|−3∣∣
∣∣403124134∣∣
∣∣
Paso 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|433124124|∣∣
∣∣433124124∣∣
∣∣
Paso 1.8
Multiply element a13a13 by its cofactor.
0|433124124|0∣∣
∣∣433124124∣∣
∣∣
Paso 1.9
The minor for a14a14 is the determinant with row 11 and column 44 deleted.
|430122123|∣∣
∣∣430122123∣∣
∣∣
Paso 1.10
Multiply element a14a14 by its cofactor.
-1|430122123|−1∣∣
∣∣430122123∣∣
∣∣
Paso 1.11
Add the terms together.
0|303224234|-3|403124134|+0|433124124|-1|430122123|0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
0|303224234|-3|403124134|+0|433124124|-1|430122123|0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
Paso 2
Multiplica 00 por |303224234|∣∣
∣∣303224234∣∣
∣∣.
0-3|403124134|+0|433124124|-1|430122123|0−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
Paso 3
Multiplica 00 por |433124124|∣∣
∣∣433124124∣∣
∣∣.
0-3|403124134|+0-1|430122123|0−3∣∣
∣∣403124134∣∣
∣∣+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4
Paso 4.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Paso 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 4.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|2434|∣∣∣2434∣∣∣
Paso 4.1.4
Multiply element a11a11 by its cofactor.
4|2434|4∣∣∣2434∣∣∣
Paso 4.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1414|∣∣∣1414∣∣∣
Paso 4.1.6
Multiply element a12a12 by its cofactor.
0|1414|0∣∣∣1414∣∣∣
Paso 4.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1213|∣∣∣1213∣∣∣
Paso 4.1.8
Multiply element a13a13 by its cofactor.
3|1213|3∣∣∣1213∣∣∣
Paso 4.1.9
Add the terms together.
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|0−3(4∣∣∣2434∣∣∣+0∣∣∣1414∣∣∣+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|0−3(4∣∣∣2434∣∣∣+0∣∣∣1414∣∣∣+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.2
Multiplica 00 por |1414|∣∣∣1414∣∣∣.
0-3(4|2434|+0+3|1213|)+0-1|430122123|0−3(4∣∣∣2434∣∣∣+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3
Evalúa |2434|∣∣∣2434∣∣∣.
Paso 4.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-3(4(2⋅4-3⋅4)+0+3|1213|)+0-1|430122123|0−3(4(2⋅4−3⋅4)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2
Simplifica el determinante.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Multiplica 22 por 44.
0-3(4(8-3⋅4)+0+3|1213|)+0-1|430122123|0−3(4(8−3⋅4)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2.1.2
Multiplica -3−3 por 44.
0-3(4(8-12)+0+3|1213|)+0-1|430122123|0−3(4(8−12)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4(8-12)+0+3|1213|)+0-1|430122123|0−3(4(8−12)+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.3.2.2
Resta 1212 de 88.
0-3(4⋅-4+0+3|1213|)+0-1|430122123|0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4⋅-4+0+3|1213|)+0-1|430122123|0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4⋅-4+0+3|1213|)+0-1|430122123|0−3(4⋅−4+0+3∣∣∣1213∣∣∣)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4
Evalúa |1213|∣∣∣1213∣∣∣.
Paso 4.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-3(4⋅-4+0+3(1⋅3-1⋅2))+0-1|430122123|0−3(4⋅−4+0+3(1⋅3−1⋅2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2
Simplifica el determinante.
Paso 4.4.2.1
Simplifica cada término.
Paso 4.4.2.1.1
Multiplica 33 por 11.
0-3(4⋅-4+0+3(3-1⋅2))+0-1|430122123|0−3(4⋅−4+0+3(3−1⋅2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2.1.2
Multiplica -1−1 por 22.
0-3(4⋅-4+0+3(3-2))+0-1|430122123|0−3(4⋅−4+0+3(3−2))+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4⋅-4+0+3(3-2))+0-1|430122123|0−3(4⋅−4+0+3(3−2))+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.4.2.2
Resta 22 de 33.
0-3(4⋅-4+0+3⋅1)+0-1|430122123|0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4⋅-4+0+3⋅1)+0-1|430122123|0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(4⋅-4+0+3⋅1)+0-1|430122123|0−3(4⋅−4+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5
Simplifica el determinante.
Paso 4.5.1
Simplifica cada término.
Paso 4.5.1.1
Multiplica 44 por -4−4.
0-3(-16+0+3⋅1)+0-1|430122123|0−3(−16+0+3⋅1)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.1.2
Multiplica 33 por 11.
0-3(-16+0+3)+0-1|430122123|0−3(−16+0+3)+0−1∣∣
∣∣430122123∣∣
∣∣
0-3(-16+0+3)+0-1|430122123|0−3(−16+0+3)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.2
Suma -16−16 y 00.
0-3(-16+3)+0-1|430122123|0−3(−16+3)+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 4.5.3
Suma -16−16 y 33.
0-3⋅-13+0-1|430122123|0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
0-3⋅-13+0-1|430122123|0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
0-3⋅-13+0-1|430122123|0−3⋅−13+0−1∣∣
∣∣430122123∣∣
∣∣
Paso 5
Paso 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 5.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|2223|∣∣∣2223∣∣∣
Paso 5.1.4
Multiply element a11a11 by its cofactor.
4|2223|4∣∣∣2223∣∣∣
Paso 5.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1213|∣∣∣1213∣∣∣
Paso 5.1.6
Multiply element a12a12 by its cofactor.
-3|1213|−3∣∣∣1213∣∣∣
Paso 5.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1212|∣∣∣1212∣∣∣
Paso 5.1.8
Multiply element a13a13 by its cofactor.
0|1212|0∣∣∣1212∣∣∣
Paso 5.1.9
Add the terms together.
0-3⋅-13+0-1(4|2223|-3|1213|+0|1212|)0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0∣∣∣1212∣∣∣)
0-3⋅-13+0-1(4|2223|-3|1213|+0|1212|)0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0∣∣∣1212∣∣∣)
Paso 5.2
Multiplica 00 por |1212|∣∣∣1212∣∣∣.
0-3⋅-13+0-1(4|2223|-3|1213|+0)0−3⋅−13+0−1(4∣∣∣2223∣∣∣−3∣∣∣1213∣∣∣+0)
Paso 5.3
Evalúa |2223|∣∣∣2223∣∣∣.
Paso 5.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-3⋅-13+0-1(4(2⋅3-2⋅2)-3|1213|+0)0−3⋅−13+0−1(4(2⋅3−2⋅2)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Multiplica 22 por 33.
0-3⋅-13+0-1(4(6-2⋅2)-3|1213|+0)0−3⋅−13+0−1(4(6−2⋅2)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2.1.2
Multiplica -2−2 por 22.
0-3⋅-13+0-1(4(6-4)-3|1213|+0)0−3⋅−13+0−1(4(6−4)−3∣∣∣1213∣∣∣+0)
0-3⋅-13+0-1(4(6-4)-3|1213|+0)0−3⋅−13+0−1(4(6−4)−3∣∣∣1213∣∣∣+0)
Paso 5.3.2.2
Resta 44 de 66.
0-3⋅-13+0-1(4⋅2-3|1213|+0)0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
0-3⋅-13+0-1(4⋅2-3|1213|+0)0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
0-3⋅-13+0-1(4⋅2-3|1213|+0)0−3⋅−13+0−1(4⋅2−3∣∣∣1213∣∣∣+0)
Paso 5.4
Evalúa |1213|∣∣∣1213∣∣∣.
Paso 5.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-3⋅-13+0-1(4⋅2-3(1⋅3-1⋅2)+0)0−3⋅−13+0−1(4⋅2−3(1⋅3−1⋅2)+0)
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Multiplica 33 por 11.
0-3⋅-13+0-1(4⋅2-3(3-1⋅2)+0)0−3⋅−13+0−1(4⋅2−3(3−1⋅2)+0)
Paso 5.4.2.1.2
Multiplica -1−1 por 22.
0-3⋅-13+0-1(4⋅2-3(3-2)+0)0−3⋅−13+0−1(4⋅2−3(3−2)+0)
0-3⋅-13+0-1(4⋅2-3(3-2)+0)0−3⋅−13+0−1(4⋅2−3(3−2)+0)
Paso 5.4.2.2
Resta 22 de 33.
0-3⋅-13+0-1(4⋅2-3⋅1+0)0−3⋅−13+0−1(4⋅2−3⋅1+0)
0-3⋅-13+0-1(4⋅2-3⋅1+0)0−3⋅−13+0−1(4⋅2−3⋅1+0)
0-3⋅-13+0-1(4⋅2-3⋅1+0)0−3⋅−13+0−1(4⋅2−3⋅1+0)
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Simplifica cada término.
Paso 5.5.1.1
Multiplica 44 por 22.
0-3⋅-13+0-1(8-3⋅1+0)0−3⋅−13+0−1(8−3⋅1+0)
Paso 5.5.1.2
Multiplica -3−3 por 11.
0-3⋅-13+0-1(8-3+0)0−3⋅−13+0−1(8−3+0)
0-3⋅-13+0-1(8-3+0)0−3⋅−13+0−1(8−3+0)
Paso 5.5.2
Resta 33 de 88.
0-3⋅-13+0-1(5+0)0−3⋅−13+0−1(5+0)
Paso 5.5.3
Suma 55 y 00.
0-3⋅-13+0-1⋅50−3⋅−13+0−1⋅5
0-3⋅-13+0-1⋅50−3⋅−13+0−1⋅5
0-3⋅-13+0-1⋅50−3⋅−13+0−1⋅5
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica -3−3 por -13−13.
0+39+0-1⋅50+39+0−1⋅5
Paso 6.1.2
Multiplica -1−1 por 55.
0+39+0-50+39+0−5
0+39+0-50+39+0−5
Paso 6.2
Suma 00 y 3939.
39+0-539+0−5
Paso 6.3
Suma 3939 y 00.
39-539−5
Paso 6.4
Resta 55 de 3939.
3434
3434