Matemática discreta Ejemplos
[0121110210100211]⎡⎢
⎢
⎢
⎢⎣0121110210100211⎤⎥
⎥
⎥
⎥⎦
Paso 1
Paso 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|102010211|∣∣
∣∣102010211∣∣
∣∣
Paso 1.4
Multiply element a11a11 by its cofactor.
0|102010211|0∣∣
∣∣102010211∣∣
∣∣
Paso 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|121010211|∣∣
∣∣121010211∣∣
∣∣
Paso 1.6
Multiply element a21a21 by its cofactor.
-1|121010211|−1∣∣
∣∣121010211∣∣
∣∣
Paso 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|121102211|∣∣
∣∣121102211∣∣
∣∣
Paso 1.8
Multiply element a31a31 by its cofactor.
1|121102211|1∣∣
∣∣121102211∣∣
∣∣
Paso 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|121102010|∣∣
∣∣121102010∣∣
∣∣
Paso 1.10
Multiply element a41a41 by its cofactor.
0|121102010|0∣∣
∣∣121102010∣∣
∣∣
Paso 1.11
Add the terms together.
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣∣
∣∣102010211∣∣
∣∣−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣∣
∣∣102010211∣∣
∣∣−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
Paso 2
Multiplica 00 por |102010211|∣∣
∣∣102010211∣∣
∣∣.
0-1|121010211|+1|121102211|+0|121102010|0−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
Paso 3
Multiplica 00 por |121102010|∣∣
∣∣121102010∣∣
∣∣.
0-1|121010211|+1|121102211|+00−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4
Paso 4.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Paso 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 4.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2111|∣∣∣2111∣∣∣
Paso 4.1.4
Multiply element a21a21 by its cofactor.
0|2111|0∣∣∣2111∣∣∣
Paso 4.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|1121|∣∣∣1121∣∣∣
Paso 4.1.6
Multiply element a22a22 by its cofactor.
1|1121|1∣∣∣1121∣∣∣
Paso 4.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|1221|∣∣∣1221∣∣∣
Paso 4.1.8
Multiply element a23a23 by its cofactor.
0|1221|0∣∣∣1221∣∣∣
Paso 4.1.9
Add the terms together.
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+00−1(0∣∣∣2111∣∣∣+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+00−1(0∣∣∣2111∣∣∣+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.2
Multiplica 00 por |2111|∣∣∣2111∣∣∣.
0-1(0+1|1121|+0|1221|)+1|121102211|+00−1(0+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.3
Multiplica 00 por |1221|∣∣∣1221∣∣∣.
0-1(0+1|1121|+0)+1|121102211|+00−1(0+1∣∣∣1121∣∣∣+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.4
Evalúa |1121|∣∣∣1121∣∣∣.
Paso 4.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-1(0+1(1⋅1-2⋅1)+0)+1|121102211|+00−1(0+1(1⋅1−2⋅1)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.4.2
Simplifica el determinante.
Paso 4.4.2.1
Simplifica cada término.
Paso 4.4.2.1.1
Multiplica 11 por 11.
0-1(0+1(1-2⋅1)+0)+1|121102211|+00−1(0+1(1−2⋅1)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.4.2.1.2
Multiplica -2−2 por 11.
0-1(0+1(1-2)+0)+1|121102211|+00−1(0+1(1−2)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0-1(0+1(1-2)+0)+1|121102211|+00−1(0+1(1−2)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.4.2.2
Resta 22 de 11.
0-1(0+1⋅-1+0)+1|121102211|+00−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0-1(0+1⋅-1+0)+1|121102211|+00−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0-1(0+1⋅-1+0)+1|121102211|+00−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.5
Simplifica el determinante.
Paso 4.5.1
Multiplica -1−1 por 11.
0-1(0-1+0)+1|121102211|+00−1(0−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.5.2
Resta 11 de 00.
0-1(-1+0)+1|121102211|+00−1(−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 4.5.3
Suma -1−1 y 00.
0-1⋅-1+1|121102211|+00−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
0-1⋅-1+1|121102211|+00−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
0-1⋅-1+1|121102211|+00−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
Paso 5
Paso 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 5.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2111|∣∣∣2111∣∣∣
Paso 5.1.4
Multiply element a21a21 by its cofactor.
-1|2111|−1∣∣∣2111∣∣∣
Paso 5.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|1121|∣∣∣1121∣∣∣
Paso 5.1.6
Multiply element a22a22 by its cofactor.
0|1121|0∣∣∣1121∣∣∣
Paso 5.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|1221|∣∣∣1221∣∣∣
Paso 5.1.8
Multiply element a23a23 by its cofactor.
-2|1221|−2∣∣∣1221∣∣∣
Paso 5.1.9
Add the terms together.
0-1⋅-1+1(-1|2111|+0|1121|-2|1221|)+00−1⋅−1+1(−1∣∣∣2111∣∣∣+0∣∣∣1121∣∣∣−2∣∣∣1221∣∣∣)+0
0-1⋅-1+1(-1|2111|+0|1121|-2|1221|)+00−1⋅−1+1(−1∣∣∣2111∣∣∣+0∣∣∣1121∣∣∣−2∣∣∣1221∣∣∣)+0
Paso 5.2
Multiplica 00 por |1121|∣∣∣1121∣∣∣.
0-1⋅-1+1(-1|2111|+0-2|1221|)+00−1⋅−1+1(−1∣∣∣2111∣∣∣+0−2∣∣∣1221∣∣∣)+0
Paso 5.3
Evalúa |2111|∣∣∣2111∣∣∣.
Paso 5.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-1⋅-1+1(-1(2⋅1-1⋅1)+0-2|1221|)+00−1⋅−1+1(−1(2⋅1−1⋅1)+0−2∣∣∣1221∣∣∣)+0
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Multiplica 22 por 11.
0-1⋅-1+1(-1(2-1⋅1)+0-2|1221|)+00−1⋅−1+1(−1(2−1⋅1)+0−2∣∣∣1221∣∣∣)+0
Paso 5.3.2.1.2
Multiplica -1−1 por 11.
0-1⋅-1+1(-1(2-1)+0-2|1221|)+00−1⋅−1+1(−1(2−1)+0−2∣∣∣1221∣∣∣)+0
0-1⋅-1+1(-1(2-1)+0-2|1221|)+00−1⋅−1+1(−1(2−1)+0−2∣∣∣1221∣∣∣)+0
Paso 5.3.2.2
Resta 11 de 22.
0-1⋅-1+1(-1⋅1+0-2|1221|)+00−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
0-1⋅-1+1(-1⋅1+0-2|1221|)+00−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
0-1⋅-1+1(-1⋅1+0-2|1221|)+00−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
Paso 5.4
Evalúa |1221|∣∣∣1221∣∣∣.
Paso 5.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-1⋅-1+1(-1⋅1+0-2(1⋅1-2⋅2))+00−1⋅−1+1(−1⋅1+0−2(1⋅1−2⋅2))+0
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Multiplica 11 por 11.
0-1⋅-1+1(-1⋅1+0-2(1-2⋅2))+00−1⋅−1+1(−1⋅1+0−2(1−2⋅2))+0
Paso 5.4.2.1.2
Multiplica -2−2 por 22.
0-1⋅-1+1(-1⋅1+0-2(1-4))+00−1⋅−1+1(−1⋅1+0−2(1−4))+0
0-1⋅-1+1(-1⋅1+0-2(1-4))+00−1⋅−1+1(−1⋅1+0−2(1−4))+0
Paso 5.4.2.2
Resta 44 de 11.
0-1⋅-1+1(-1⋅1+0-2⋅-3)+00−1⋅−1+1(−1⋅1+0−2⋅−3)+0
0-1⋅-1+1(-1⋅1+0-2⋅-3)+00−1⋅−1+1(−1⋅1+0−2⋅−3)+0
0-1⋅-1+1(-1⋅1+0-2⋅-3)+00−1⋅−1+1(−1⋅1+0−2⋅−3)+0
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Simplifica cada término.
Paso 5.5.1.1
Multiplica -1−1 por 11.
0-1⋅-1+1(-1+0-2⋅-3)+00−1⋅−1+1(−1+0−2⋅−3)+0
Paso 5.5.1.2
Multiplica -2−2 por -3−3.
0-1⋅-1+1(-1+0+6)+00−1⋅−1+1(−1+0+6)+0
0-1⋅-1+1(-1+0+6)+00−1⋅−1+1(−1+0+6)+0
Paso 5.5.2
Suma -1−1 y 00.
0-1⋅-1+1(-1+6)+00−1⋅−1+1(−1+6)+0
Paso 5.5.3
Suma -1−1 y 66.
0-1⋅-1+1⋅5+00−1⋅−1+1⋅5+0
0-1⋅-1+1⋅5+00−1⋅−1+1⋅5+0
0-1⋅-1+1⋅5+00−1⋅−1+1⋅5+0
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica -1−1 por -1−1.
0+1+1⋅5+00+1+1⋅5+0
Paso 6.1.2
Multiplica 55 por 11.
0+1+5+00+1+5+0
0+1+5+00+1+5+0
Paso 6.2
Suma 00 y 11.
1+5+01+5+0
Paso 6.3
Suma 11 y 55.
6+06+0
Paso 6.4
Suma 66 y 00.
66
66