Matemática discreta Ejemplos

[0121110210100211]⎢ ⎢ ⎢ ⎢0121110210100211⎥ ⎥ ⎥ ⎥
Paso 1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣ ∣ ∣ ∣++++++++∣ ∣ ∣ ∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|102010211|∣ ∣102010211∣ ∣
Paso 1.4
Multiply element a11a11 by its cofactor.
0|102010211|0∣ ∣102010211∣ ∣
Paso 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|121010211|∣ ∣121010211∣ ∣
Paso 1.6
Multiply element a21a21 by its cofactor.
-1|121010211|1∣ ∣121010211∣ ∣
Paso 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|121102211|∣ ∣121102211∣ ∣
Paso 1.8
Multiply element a31a31 by its cofactor.
1|121102211|1∣ ∣121102211∣ ∣
Paso 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|121102010|∣ ∣121102010∣ ∣
Paso 1.10
Multiply element a41a41 by its cofactor.
0|121102010|0∣ ∣121102010∣ ∣
Paso 1.11
Add the terms together.
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣ ∣102010211∣ ∣1∣ ∣121010211∣ ∣+1∣ ∣121102211∣ ∣+0∣ ∣121102010∣ ∣
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣ ∣102010211∣ ∣1∣ ∣121010211∣ ∣+1∣ ∣121102211∣ ∣+0∣ ∣121102010∣ ∣
Paso 2
Multiplica 00 por |102010211|∣ ∣102010211∣ ∣.
0-1|121010211|+1|121102211|+0|121102010|01∣ ∣121010211∣ ∣+1∣ ∣121102211∣ ∣+0∣ ∣121102010∣ ∣
Paso 3
Multiplica 00 por |121102010|∣ ∣121102010∣ ∣.
0-1|121010211|+1|121102211|+001∣ ∣121010211∣ ∣+1∣ ∣121102211∣ ∣+0
Paso 4
Evalúa |121010211|∣ ∣121010211∣ ∣.
Toca para ver más pasos...
Paso 4.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Toca para ver más pasos...
Paso 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 4.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2111|2111
Paso 4.1.4
Multiply element a21a21 by its cofactor.
0|2111|02111
Paso 4.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|1121|1121
Paso 4.1.6
Multiply element a22a22 by its cofactor.
1|1121|11121
Paso 4.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|1221|1221
Paso 4.1.8
Multiply element a23a23 by its cofactor.
0|1221|01221
Paso 4.1.9
Add the terms together.
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+001(02111+11121+01221)+1∣ ∣121102211∣ ∣+0
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+001(02111+11121+01221)+1∣ ∣121102211∣ ∣+0
Paso 4.2
Multiplica 00 por |2111|2111.
0-1(0+1|1121|+0|1221|)+1|121102211|+001(0+11121+01221)+1∣ ∣121102211∣ ∣+0
Paso 4.3
Multiplica 00 por |1221|1221.
0-1(0+1|1121|+0)+1|121102211|+001(0+11121+0)+1∣ ∣121102211∣ ∣+0
Paso 4.4
Evalúa |1121|1121.
Toca para ver más pasos...
Paso 4.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1(0+1(11-21)+0)+1|121102211|+001(0+1(1121)+0)+1∣ ∣121102211∣ ∣+0
Paso 4.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 4.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.4.2.1.1
Multiplica 11 por 11.
0-1(0+1(1-21)+0)+1|121102211|+001(0+1(121)+0)+1∣ ∣121102211∣ ∣+0
Paso 4.4.2.1.2
Multiplica -22 por 11.
0-1(0+1(1-2)+0)+1|121102211|+001(0+1(12)+0)+1∣ ∣121102211∣ ∣+0
0-1(0+1(1-2)+0)+1|121102211|+001(0+1(12)+0)+1∣ ∣121102211∣ ∣+0
Paso 4.4.2.2
Resta 22 de 11.
0-1(0+1-1+0)+1|121102211|+001(0+11+0)+1∣ ∣121102211∣ ∣+0
0-1(0+1-1+0)+1|121102211|+001(0+11+0)+1∣ ∣121102211∣ ∣+0
0-1(0+1-1+0)+1|121102211|+001(0+11+0)+1∣ ∣121102211∣ ∣+0
Paso 4.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 4.5.1
Multiplica -11 por 11.
0-1(0-1+0)+1|121102211|+001(01+0)+1∣ ∣121102211∣ ∣+0
Paso 4.5.2
Resta 11 de 00.
0-1(-1+0)+1|121102211|+001(1+0)+1∣ ∣121102211∣ ∣+0
Paso 4.5.3
Suma -11 y 00.
0-1-1+1|121102211|+0011+1∣ ∣121102211∣ ∣+0
0-1-1+1|121102211|+0011+1∣ ∣121102211∣ ∣+0
0-1-1+1|121102211|+0011+1∣ ∣121102211∣ ∣+0
Paso 5
Evalúa |121102211|∣ ∣121102211∣ ∣.
Toca para ver más pasos...
Paso 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Toca para ver más pasos...
Paso 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2111|2111
Paso 5.1.4
Multiply element a21a21 by its cofactor.
-1|2111|12111
Paso 5.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|1121|1121
Paso 5.1.6
Multiply element a22a22 by its cofactor.
0|1121|01121
Paso 5.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|1221|1221
Paso 5.1.8
Multiply element a23a23 by its cofactor.
-2|1221|21221
Paso 5.1.9
Add the terms together.
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0011+1(12111+0112121221)+0
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0011+1(12111+0112121221)+0
Paso 5.2
Multiplica 00 por |1121|1121.
0-1-1+1(-1|2111|+0-2|1221|)+0011+1(12111+021221)+0
Paso 5.3
Evalúa |2111|2111.
Toca para ver más pasos...
Paso 5.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1-1+1(-1(21-11)+0-2|1221|)+0011+1(1(2111)+021221)+0
Paso 5.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.2.1.1
Multiplica 22 por 11.
0-1-1+1(-1(2-11)+0-2|1221|)+0011+1(1(211)+021221)+0
Paso 5.3.2.1.2
Multiplica -11 por 11.
0-1-1+1(-1(2-1)+0-2|1221|)+0011+1(1(21)+021221)+0
0-1-1+1(-1(2-1)+0-2|1221|)+0011+1(1(21)+021221)+0
Paso 5.3.2.2
Resta 11 de 22.
0-1-1+1(-11+0-2|1221|)+0011+1(11+021221)+0
0-1-1+1(-11+0-2|1221|)+0011+1(11+021221)+0
0-1-1+1(-11+0-2|1221|)+0011+1(11+021221)+0
Paso 5.4
Evalúa |1221|1221.
Toca para ver más pasos...
Paso 5.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
0-1-1+1(-11+0-2(11-22))+0011+1(11+02(1122))+0
Paso 5.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.2.1.1
Multiplica 11 por 11.
0-1-1+1(-11+0-2(1-22))+0011+1(11+02(122))+0
Paso 5.4.2.1.2
Multiplica -22 por 22.
0-1-1+1(-11+0-2(1-4))+0011+1(11+02(14))+0
0-1-1+1(-11+0-2(1-4))+0011+1(11+02(14))+0
Paso 5.4.2.2
Resta 44 de 11.
0-1-1+1(-11+0-2-3)+0011+1(11+023)+0
0-1-1+1(-11+0-2-3)+0011+1(11+023)+0
0-1-1+1(-11+0-2-3)+0011+1(11+023)+0
Paso 5.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.5.1.1
Multiplica -11 por 11.
0-1-1+1(-1+0-2-3)+0011+1(1+023)+0
Paso 5.5.1.2
Multiplica -22 por -33.
0-1-1+1(-1+0+6)+0011+1(1+0+6)+0
0-1-1+1(-1+0+6)+0011+1(1+0+6)+0
Paso 5.5.2
Suma -11 y 00.
0-1-1+1(-1+6)+0011+1(1+6)+0
Paso 5.5.3
Suma -11 y 66.
0-1-1+15+0011+15+0
0-1-1+15+0011+15+0
0-1-1+15+0011+15+0
Paso 6
Simplifica el determinante.
Toca para ver más pasos...
Paso 6.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.1.1
Multiplica -11 por -11.
0+1+15+00+1+15+0
Paso 6.1.2
Multiplica 55 por 11.
0+1+5+00+1+5+0
0+1+5+00+1+5+0
Paso 6.2
Suma 00 y 11.
1+5+01+5+0
Paso 6.3
Suma 11 y 55.
6+06+0
Paso 6.4
Suma 66 y 00.
66
66
Ingresa TU problema
using Amazon.Auth.AccessControlPolicy;
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay