Matemática discreta Ejemplos
Paso 1
Obtén dónde la expresión no está definida.
Paso 2
Como a medida que desde la izquierda y a medida que desde la derecha, entonces es una asíntota vertical.
Paso 3
Considera la función racional donde es el grado del numerador y es el grado del denominador.
1. Si , entonces el eje x, , es la asíntota horizontal.
2. Si , entonces la asíntota horizontal es la línea .
3. Si , entonces no hay asíntota horizontal (hay una asíntota oblicua).
Paso 4
Obtén y .
Paso 5
Como , el eje x, , es la asíntota horizontal.
Paso 6
No hay ninguna asíntota oblicua porque el grado del numerador es menor o igual que el grado del denominador.
No hay asíntotas oblicuas
Paso 7
Este es el conjunto de todas las asíntotas.
Asíntotas verticales:
Asíntotas horizontales:
No hay asíntotas oblicuas
Paso 8