Cálculo Ejemplos

Obtener el cociente diferencial
f(x)=x2+2f(x)=x2+2
Paso 1
Considera la fórmula del cociente diferencial.
f(x+h)-f(x)hf(x+h)f(x)h
Paso 2
Obtén los componentes de la definición.
Toca para ver más pasos...
Paso 2.1
Evalúa la función en x=x+hx=x+h.
Toca para ver más pasos...
Paso 2.1.1
Reemplaza la variable xx con x+hx+h en la expresión.
f(x+h)=(x+h)2+2f(x+h)=(x+h)2+2
Paso 2.1.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 2.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.2.1.1
Reescribe (x+h)2(x+h)2 como (x+h)(x+h)(x+h)(x+h).
f(x+h)=(x+h)(x+h)+2f(x+h)=(x+h)(x+h)+2
Paso 2.1.2.1.2
Expande (x+h)(x+h)(x+h)(x+h) con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 2.1.2.1.2.1
Aplica la propiedad distributiva.
f(x+h)=x(x+h)+h(x+h)+2f(x+h)=x(x+h)+h(x+h)+2
Paso 2.1.2.1.2.2
Aplica la propiedad distributiva.
f(x+h)=xx+xh+h(x+h)+2f(x+h)=xx+xh+h(x+h)+2
Paso 2.1.2.1.2.3
Aplica la propiedad distributiva.
f(x+h)=xx+xh+hx+hh+2f(x+h)=xx+xh+hx+hh+2
f(x+h)=xx+xh+hx+hh+2f(x+h)=xx+xh+hx+hh+2
Paso 2.1.2.1.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 2.1.2.1.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.2.1.3.1.1
Multiplica xx por xx.
f(x+h)=x2+xh+hx+hh+2f(x+h)=x2+xh+hx+hh+2
Paso 2.1.2.1.3.1.2
Multiplica hh por hh.
f(x+h)=x2+xh+hx+h2+2f(x+h)=x2+xh+hx+h2+2
f(x+h)=x2+xh+hx+h2+2f(x+h)=x2+xh+hx+h2+2
Paso 2.1.2.1.3.2
Suma xhxh y hxhx.
Toca para ver más pasos...
Paso 2.1.2.1.3.2.1
Reordena xx y hh.
f(x+h)=x2+hx+hx+h2+2f(x+h)=x2+hx+hx+h2+2
Paso 2.1.2.1.3.2.2
Suma hxhx y hxhx.
f(x+h)=x2+2hx+h2+2f(x+h)=x2+2hx+h2+2
f(x+h)=x2+2hx+h2+2f(x+h)=x2+2hx+h2+2
f(x+h)=x2+2hx+h2+2f(x+h)=x2+2hx+h2+2
f(x+h)=x2+2hx+h2+2f(x+h)=x2+2hx+h2+2
Paso 2.1.2.2
La respuesta final es x2+2hx+h2+2x2+2hx+h2+2.
x2+2hx+h2+2x2+2hx+h2+2
x2+2hx+h2+2x2+2hx+h2+2
x2+2hx+h2+2x2+2hx+h2+2
Paso 2.2
Reordena.
Toca para ver más pasos...
Paso 2.2.1
Mueve x2x2.
2hx+h2+x2+22hx+h2+x2+2
Paso 2.2.2
Reordena 2hx2hx y h2h2.
h2+2hx+x2+2h2+2hx+x2+2
h2+2hx+x2+2h2+2hx+x2+2
Paso 2.3
Obtén los componentes de la definición.
f(x+h)=h2+2hx+x2+2f(x+h)=h2+2hx+x2+2
f(x)=x2+2f(x)=x2+2
f(x+h)=h2+2hx+x2+2f(x+h)=h2+2hx+x2+2
f(x)=x2+2f(x)=x2+2
Paso 3
Inserta los componentes.
f(x+h)-f(x)h=h2+2hx+x2+2-(x2+2)hf(x+h)f(x)h=h2+2hx+x2+2(x2+2)h
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.1
Aplica la propiedad distributiva.
h2+2hx+x2+2-x2-12hh2+2hx+x2+2x212h
Paso 4.1.2
Multiplica -11 por 22.
h2+2hx+x2+2-x2-2hh2+2hx+x2+2x22h
Paso 4.1.3
Resta x2x2 de x2x2.
h2+2hx+0+2-2hh2+2hx+0+22h
Paso 4.1.4
Suma h2h2 y 00.
h2+2hx+2-2hh2+2hx+22h
Paso 4.1.5
Resta 22 de 22.
h2+2hx+0hh2+2hx+0h
Paso 4.1.6
Suma h2+2hxh2+2hx y 00.
h2+2hxh
Paso 4.1.7
Factoriza h de h2+2hx.
Toca para ver más pasos...
Paso 4.1.7.1
Factoriza h de h2.
hh+2hxh
Paso 4.1.7.2
Factoriza h de 2hx.
h(h)+h(2x)h
Paso 4.1.7.3
Factoriza h de h(h)+h(2x).
h(h+2x)h
h(h+2x)h
h(h+2x)h
Paso 4.2
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 4.2.1
Cancela el factor común de h.
Toca para ver más pasos...
Paso 4.2.1.1
Cancela el factor común.
h(h+2x)h
Paso 4.2.1.2
Divide h+2x por 1.
h+2x
h+2x
Paso 4.2.2
Reordena h y 2x.
2x+h
2x+h
2x+h
Paso 5
Ingresa TU problema
using Amazon.Auth.AccessControlPolicy;
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay