Cálculo Ejemplos

Obtener el máximo y mínimo absolutos durante el intervalo
,
Paso 1
Obtén los puntos críticos.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Multiplica por .
Paso 1.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.4.2
Suma y .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Factoriza de .
Toca para ver más pasos...
Paso 1.2.2.1
Factoriza de .
Paso 1.2.2.2
Factoriza de .
Paso 1.2.2.3
Factoriza de .
Paso 1.2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.4
Establece igual a .
Paso 1.2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.5.1
Establece igual a .
Paso 1.2.5.2
Resuelve en .
Toca para ver más pasos...
Paso 1.2.5.2.1
Suma a ambos lados de la ecuación.
Paso 1.2.5.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.2.5.2.2.1
Divide cada término en por .
Paso 1.2.5.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.5.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.5.2.2.2.1.1
Cancela el factor común.
Paso 1.2.5.2.2.2.1.2
Divide por .
Paso 1.2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 1.4.1
Evalúa en .
Toca para ver más pasos...
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Toca para ver más pasos...
Paso 1.4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.1.2.1.2
Multiplica por .
Paso 1.4.1.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.1.2.1.4
Multiplica por .
Paso 1.4.1.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 1.4.1.2.2.1
Suma y .
Paso 1.4.1.2.2.2
Resta de .
Paso 1.4.2
Evalúa en .
Toca para ver más pasos...
Paso 1.4.2.1
Sustituye por .
Paso 1.4.2.2
Simplifica.
Toca para ver más pasos...
Paso 1.4.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.2.1.1
Aplica la regla del producto a .
Paso 1.4.2.2.1.2
Eleva a la potencia de .
Paso 1.4.2.2.1.3
Eleva a la potencia de .
Paso 1.4.2.2.1.4
Multiplica .
Toca para ver más pasos...
Paso 1.4.2.2.1.4.1
Combina y .
Paso 1.4.2.2.1.4.2
Multiplica por .
Paso 1.4.2.2.1.5
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.4.2.2.1.5.1
Reescribe como .
Paso 1.4.2.2.1.5.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.4.2.2.1.5.2.1
Reescribe como .
Paso 1.4.2.2.1.5.2.2
Cancela el factor común.
Paso 1.4.2.2.1.5.2.3
Reescribe la expresión.
Paso 1.4.2.2.1.6
Aplica la regla del producto a .
Paso 1.4.2.2.1.7
Eleva a la potencia de .
Paso 1.4.2.2.1.8
Eleva a la potencia de .
Paso 1.4.2.2.1.9
Multiplica .
Toca para ver más pasos...
Paso 1.4.2.2.1.9.1
Combina y .
Paso 1.4.2.2.1.9.2
Multiplica por .
Paso 1.4.2.2.1.10
Mueve el negativo al frente de la fracción.
Paso 1.4.2.2.2
Obtén el denominador común
Toca para ver más pasos...
Paso 1.4.2.2.2.1
Multiplica por .
Paso 1.4.2.2.2.2
Multiplica por .
Paso 1.4.2.2.2.3
Escribe como una fracción con el denominador .
Paso 1.4.2.2.2.4
Multiplica por .
Paso 1.4.2.2.2.5
Multiplica por .
Paso 1.4.2.2.2.6
Reordena los factores de .
Paso 1.4.2.2.2.7
Multiplica por .
Paso 1.4.2.2.3
Combina los numeradores sobre el denominador común.
Paso 1.4.2.2.4
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.2.4.1
Multiplica por .
Paso 1.4.2.2.4.2
Multiplica por .
Paso 1.4.2.2.5
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.4.2.2.5.1
Resta de .
Paso 1.4.2.2.5.2
Resta de .
Paso 1.4.2.2.5.3
Mueve el negativo al frente de la fracción.
Paso 1.4.3
Enumera todos los puntos.
Paso 2
Evalúa en los extremos incluidos.
Toca para ver más pasos...
Paso 2.1
Evalúa en .
Toca para ver más pasos...
Paso 2.1.1
Sustituye por .
Paso 2.1.2
Simplifica.
Toca para ver más pasos...
Paso 2.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.2.1.1
Eleva a la potencia de .
Paso 2.1.2.1.2
Multiplica por .
Paso 2.1.2.1.3
Eleva a la potencia de .
Paso 2.1.2.1.4
Multiplica por .
Paso 2.1.2.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 2.1.2.2.1
Resta de .
Paso 2.1.2.2.2
Resta de .
Paso 2.2
Evalúa en .
Toca para ver más pasos...
Paso 2.2.1
Sustituye por .
Paso 2.2.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.2.1.1
Eleva a la potencia de .
Paso 2.2.2.1.2
Multiplica por .
Paso 2.2.2.1.3
Eleva a la potencia de .
Paso 2.2.2.1.4
Multiplica por .
Paso 2.2.2.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 2.2.2.2.1
Resta de .
Paso 2.2.2.2.2
Resta de .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.