Ejemplos

Obtener la inversa
[203300024]203300024
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|0324|0324
Paso 1.1.4
Multiply element a21a21 by its cofactor.
-3|0324|30324
Paso 1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2304|2304
Paso 1.1.6
Multiply element a22a22 by its cofactor.
0|2304|02304
Paso 1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|2002|2002
Paso 1.1.8
Multiply element a23a23 by its cofactor.
0|2002|02002
Paso 1.1.9
Add the terms together.
-3|0324|+0|2304|+0|2002|30324+02304+02002
-3|0324|+0|2304|+0|2002|30324+02304+02002
Paso 1.2
Multiplica 00 por |2304|2304.
-3|0324|+0+0|2002|30324+0+02002
Paso 1.3
Multiplica 00 por |2002|2002.
-3|0324|+0+030324+0+0
Paso 1.4
Evalúa |0324|0324.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
-3(04-23)+0+03(0423)+0+0
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 00 por 44.
-3(0-23)+0+03(023)+0+0
Paso 1.4.2.1.2
Multiplica -22 por 33.
-3(0-6)+0+03(06)+0+0
-3(0-6)+0+03(06)+0+0
Paso 1.4.2.2
Resta 66 de 00.
-3-6+0+036+0+0
-3-6+0+036+0+0
-3-6+0+036+0+0
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Multiplica -33 por -66.
18+0+018+0+0
Paso 1.5.2
Suma 1818 y 00.
18+018+0
Paso 1.5.3
Suma 1818 y 00.
1818
1818
1818
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[203100300010024001]203100300010024001
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Toca para ver más pasos...
Paso 4.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[220232120202300010024001]⎢ ⎢220232120202300010024001⎥ ⎥
Paso 4.1.2
Simplifica R1R1.
[10321200300010024001]
[10321200300010024001]
Paso 4.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[103212003-310-300-3(32)0-3(12)1-300-30024001]
Paso 4.2.2
Simplifica R2.
[1032120000-92-3210024001]
[1032120000-92-3210024001]
Paso 4.3
Swap R3 with R2 to put a nonzero entry at 2,2.
[1032120002400100-92-3210]
Paso 4.4
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
[1032120002224202021200-92-3210]
Paso 4.4.2
Simplifica R2.
[10321200012001200-92-3210]
[10321200012001200-92-3210]
Paso 4.5
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
Toca para ver más pasos...
Paso 4.5.1
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
[103212000120012-290-290-29(-92)-29(-32)-291-290]
Paso 4.5.2
Simplifica R3.
[10321200012001200113-290]
[10321200012001200113-290]
Paso 4.6
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
Toca para ver más pasos...
Paso 4.6.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[103212000-201-202-210-2(13)0-2(-29)12-2000113-290]
Paso 4.6.2
Simplifica R2.
[10321200010-23491200113-290]
[10321200010-23491200113-290]
Paso 4.7
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
[1-3200-32032-32112-32130-32(-29)0-320010-23491200113-290]
Paso 4.7.2
Simplifica R1.
[1000130010-23491200113-290]
[1000130010-23491200113-290]
[1000130010-23491200113-290]
Paso 5
The right half of the reduced row echelon form is the inverse.
[0130-23491213-290]
Ingresa TU problema
using Amazon.Auth.AccessControlPolicy;
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay