Ejemplos
[1123021421232110]⎡⎢
⎢
⎢
⎢⎣1123021421232110⎤⎥
⎥
⎥
⎥⎦
Paso 1
Paso 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|214123110|∣∣
∣∣214123110∣∣
∣∣
Paso 1.4
Multiply element a11a11 by its cofactor.
1|214123110|1∣∣
∣∣214123110∣∣
∣∣
Paso 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|123123110|∣∣
∣∣123123110∣∣
∣∣
Paso 1.6
Multiply element a21a21 by its cofactor.
0|123123110|0∣∣
∣∣123123110∣∣
∣∣
Paso 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|123214110|∣∣
∣∣123214110∣∣
∣∣
Paso 1.8
Multiply element a31a31 by its cofactor.
2|123214110|2∣∣
∣∣123214110∣∣
∣∣
Paso 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|123214123|∣∣
∣∣123214123∣∣
∣∣
Paso 1.10
Multiply element a41a41 by its cofactor.
-2|123214123|−2∣∣
∣∣123214123∣∣
∣∣
Paso 1.11
Add the terms together.
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣∣
∣∣214123110∣∣
∣∣+0∣∣
∣∣123123110∣∣
∣∣+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
1|214123110|+0|123123110|+2|123214110|-2|123214123|1∣∣
∣∣214123110∣∣
∣∣+0∣∣
∣∣123123110∣∣
∣∣+2∣∣
∣∣123214110∣∣
∣∣−2∣∣
∣∣123214123∣∣
∣∣
Paso 2
Multiplica 0 por |123123110|.
1|214123110|+0+2|123214110|-2|123214123|
Paso 3
Paso 3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Paso 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 3.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1423|
Paso 3.1.4
Multiply element a31 by its cofactor.
1|1423|
Paso 3.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|2413|
Paso 3.1.6
Multiply element a32 by its cofactor.
-1|2413|
Paso 3.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|2112|
Paso 3.1.8
Multiply element a33 by its cofactor.
0|2112|
Paso 3.1.9
Add the terms together.
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|
Paso 3.2
Multiplica 0 por |2112|.
1(1|1423|-1|2413|+0)+0+2|123214110|-2|123214123|
Paso 3.3
Evalúa |1423|.
Paso 3.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1(1(1⋅3-2⋅4)-1|2413|+0)+0+2|123214110|-2|123214123|
Paso 3.3.2
Simplifica el determinante.
Paso 3.3.2.1
Simplifica cada término.
Paso 3.3.2.1.1
Multiplica 3 por 1.
1(1(3-2⋅4)-1|2413|+0)+0+2|123214110|-2|123214123|
Paso 3.3.2.1.2
Multiplica -2 por 4.
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|
Paso 3.3.2.2
Resta 8 de 3.
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|
1(1⋅-5-1|2413|+0)+0+2|123214110|-2|123214123|
Paso 3.4
Evalúa |2413|.
Paso 3.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1(1⋅-5-1(2⋅3-1⋅4)+0)+0+2|123214110|-2|123214123|
Paso 3.4.2
Simplifica el determinante.
Paso 3.4.2.1
Simplifica cada término.
Paso 3.4.2.1.1
Multiplica 2 por 3.
1(1⋅-5-1(6-1⋅4)+0)+0+2|123214110|-2|123214123|
Paso 3.4.2.1.2
Multiplica -1 por 4.
1(1⋅-5-1(6-4)+0)+0+2|123214110|-2|123214123|
1(1⋅-5-1(6-4)+0)+0+2|123214110|-2|123214123|
Paso 3.4.2.2
Resta 4 de 6.
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|
1(1⋅-5-1⋅2+0)+0+2|123214110|-2|123214123|
Paso 3.5
Simplifica el determinante.
Paso 3.5.1
Simplifica cada término.
Paso 3.5.1.1
Multiplica -5 por 1.
1(-5-1⋅2+0)+0+2|123214110|-2|123214123|
Paso 3.5.1.2
Multiplica -1 por 2.
1(-5-2+0)+0+2|123214110|-2|123214123|
1(-5-2+0)+0+2|123214110|-2|123214123|
Paso 3.5.2
Resta 2 de -5.
1(-7+0)+0+2|123214110|-2|123214123|
Paso 3.5.3
Suma -7 y 0.
1⋅-7+0+2|123214110|-2|123214123|
1⋅-7+0+2|123214110|-2|123214123|
1⋅-7+0+2|123214110|-2|123214123|
Paso 4
Paso 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Paso 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 4.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2314|
Paso 4.1.4
Multiply element a31 by its cofactor.
1|2314|
Paso 4.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1324|
Paso 4.1.6
Multiply element a32 by its cofactor.
-1|1324|
Paso 4.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1221|
Paso 4.1.8
Multiply element a33 by its cofactor.
0|1221|
Paso 4.1.9
Add the terms together.
1⋅-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
1⋅-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
Paso 4.2
Multiplica 0 por |1221|.
1⋅-7+0+2(1|2314|-1|1324|+0)-2|123214123|
Paso 4.3
Evalúa |2314|.
Paso 4.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-7+0+2(1(2⋅4-1⋅3)-1|1324|+0)-2|123214123|
Paso 4.3.2
Simplifica el determinante.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Multiplica 2 por 4.
1⋅-7+0+2(1(8-1⋅3)-1|1324|+0)-2|123214123|
Paso 4.3.2.1.2
Multiplica -1 por 3.
1⋅-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
1⋅-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
Paso 4.3.2.2
Resta 3 de 8.
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|
1⋅-7+0+2(1⋅5-1|1324|+0)-2|123214123|
Paso 4.4
Evalúa |1324|.
Paso 4.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-7+0+2(1⋅5-1(1⋅4-2⋅3)+0)-2|123214123|
Paso 4.4.2
Simplifica el determinante.
Paso 4.4.2.1
Simplifica cada término.
Paso 4.4.2.1.1
Multiplica 4 por 1.
1⋅-7+0+2(1⋅5-1(4-2⋅3)+0)-2|123214123|
Paso 4.4.2.1.2
Multiplica -2 por 3.
1⋅-7+0+2(1⋅5-1(4-6)+0)-2|123214123|
1⋅-7+0+2(1⋅5-1(4-6)+0)-2|123214123|
Paso 4.4.2.2
Resta 6 de 4.
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|
1⋅-7+0+2(1⋅5-1⋅-2+0)-2|123214123|
Paso 4.5
Simplifica el determinante.
Paso 4.5.1
Simplifica cada término.
Paso 4.5.1.1
Multiplica 5 por 1.
1⋅-7+0+2(5-1⋅-2+0)-2|123214123|
Paso 4.5.1.2
Multiplica -1 por -2.
1⋅-7+0+2(5+2+0)-2|123214123|
1⋅-7+0+2(5+2+0)-2|123214123|
Paso 4.5.2
Suma 5 y 2.
1⋅-7+0+2(7+0)-2|123214123|
Paso 4.5.3
Suma 7 y 0.
1⋅-7+0+2⋅7-2|123214123|
1⋅-7+0+2⋅7-2|123214123|
1⋅-7+0+2⋅7-2|123214123|
Paso 5
Paso 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1423|
Paso 5.1.4
Multiply element a11 by its cofactor.
1|1423|
Paso 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2413|
Paso 5.1.6
Multiply element a12 by its cofactor.
-2|2413|
Paso 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2112|
Paso 5.1.8
Multiply element a13 by its cofactor.
3|2112|
Paso 5.1.9
Add the terms together.
1⋅-7+0+2⋅7-2(1|1423|-2|2413|+3|2112|)
1⋅-7+0+2⋅7-2(1|1423|-2|2413|+3|2112|)
Paso 5.2
Evalúa |1423|.
Paso 5.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-7+0+2⋅7-2(1(1⋅3-2⋅4)-2|2413|+3|2112|)
Paso 5.2.2
Simplifica el determinante.
Paso 5.2.2.1
Simplifica cada término.
Paso 5.2.2.1.1
Multiplica 3 por 1.
1⋅-7+0+2⋅7-2(1(3-2⋅4)-2|2413|+3|2112|)
Paso 5.2.2.1.2
Multiplica -2 por 4.
1⋅-7+0+2⋅7-2(1(3-8)-2|2413|+3|2112|)
1⋅-7+0+2⋅7-2(1(3-8)-2|2413|+3|2112|)
Paso 5.2.2.2
Resta 8 de 3.
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)
1⋅-7+0+2⋅7-2(1⋅-5-2|2413|+3|2112|)
Paso 5.3
Evalúa |2413|.
Paso 5.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-7+0+2⋅7-2(1⋅-5-2(2⋅3-1⋅4)+3|2112|)
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Multiplica 2 por 3.
1⋅-7+0+2⋅7-2(1⋅-5-2(6-1⋅4)+3|2112|)
Paso 5.3.2.1.2
Multiplica -1 por 4.
1⋅-7+0+2⋅7-2(1⋅-5-2(6-4)+3|2112|)
1⋅-7+0+2⋅7-2(1⋅-5-2(6-4)+3|2112|)
Paso 5.3.2.2
Resta 4 de 6.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3|2112|)
Paso 5.4
Evalúa |2112|.
Paso 5.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(2⋅2-1⋅1))
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Multiplica 2 por 2.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1⋅1))
Paso 5.4.2.1.2
Multiplica -1 por 1.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1))
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3(4-1))
Paso 5.4.2.2
Resta 1 de 4.
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)
1⋅-7+0+2⋅7-2(1⋅-5-2⋅2+3⋅3)
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Simplifica cada término.
Paso 5.5.1.1
Multiplica -5 por 1.
1⋅-7+0+2⋅7-2(-5-2⋅2+3⋅3)
Paso 5.5.1.2
Multiplica -2 por 2.
1⋅-7+0+2⋅7-2(-5-4+3⋅3)
Paso 5.5.1.3
Multiplica 3 por 3.
1⋅-7+0+2⋅7-2(-5-4+9)
1⋅-7+0+2⋅7-2(-5-4+9)
Paso 5.5.2
Resta 4 de -5.
1⋅-7+0+2⋅7-2(-9+9)
Paso 5.5.3
Suma -9 y 9.
1⋅-7+0+2⋅7-2⋅0
1⋅-7+0+2⋅7-2⋅0
1⋅-7+0+2⋅7-2⋅0
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica -7 por 1.
-7+0+2⋅7-2⋅0
Paso 6.1.2
Multiplica 2 por 7.
-7+0+14-2⋅0
Paso 6.1.3
Multiplica -2 por 0.
-7+0+14+0
-7+0+14+0
Paso 6.2
Suma -7 y 0.
-7+14+0
Paso 6.3
Suma -7 y 14.
7+0
Paso 6.4
Suma 7 y 0.
7
7