Álgebra Ejemplos
xq(x)1-19159258125315xq(x)1−19159258125315
Paso 1
Paso 1.1
Para determinar si la tabla sigue una regla de la función, comprueba si los valores siguen la forma lineal y=ax+by=ax+b.
y=ax+by=ax+b
Paso 1.2
Construye un conjunto de ecuaciones a partir de la tabla de modo que q(x)=ax+bq(x)=ax+b.
-1=a(1)+b159=a(9)+b5=a(2)+b125=a(8)+b15=a(3)+b
Paso 1.3
Calcula los valores de a y b.
Paso 1.3.1
Resuelve a en -1=a+b.
Paso 1.3.1.1
Reescribe la ecuación como a+b=-1.
a+b=-1
159=a(9)+b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.1.2
Resta b de ambos lados de la ecuación.
a=-1-b
159=a(9)+b
5=a(2)+b
125=a(8)+b
15=a(3)+b
a=-1-b
159=a(9)+b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2
Reemplaza todos los casos de a por -1-b en cada ecuación.
Paso 1.3.2.1
Reemplaza todos los casos de a en 159=a(9)+b por -1-b.
159=(-1-b)(9)+b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.2
Simplifica el lado derecho.
Paso 1.3.2.2.1
Simplifica (-1-b)(9)+b.
Paso 1.3.2.2.1.1
Simplifica cada término.
Paso 1.3.2.2.1.1.1
Aplica la propiedad distributiva.
159=-1⋅9-b⋅9+b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.2.1.1.2
Multiplica -1 por 9.
159=-9-b⋅9+b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.2.1.1.3
Multiplica 9 por -1.
159=-9-9b+b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
159=-9-9b+b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.2.1.2
Suma -9b y b.
159=-9-8b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
159=-9-8b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
159=-9-8b
a=-1-b
5=a(2)+b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.3
Reemplaza todos los casos de a en 5=a(2)+b por -1-b.
5=(-1-b)(2)+b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.4
Simplifica el lado derecho.
Paso 1.3.2.4.1
Simplifica (-1-b)(2)+b.
Paso 1.3.2.4.1.1
Simplifica cada término.
Paso 1.3.2.4.1.1.1
Aplica la propiedad distributiva.
5=-1⋅2-b⋅2+b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.4.1.1.2
Multiplica -1 por 2.
5=-2-b⋅2+b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.4.1.1.3
Multiplica 2 por -1.
5=-2-2b+b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
5=-2-2b+b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.4.1.2
Suma -2b y b.
5=-2-b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
5=-2-b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
5=-2-b
159=-9-8b
a=-1-b
125=a(8)+b
15=a(3)+b
Paso 1.3.2.5
Reemplaza todos los casos de a en 125=a(8)+b por -1-b.
125=(-1-b)(8)+b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
Paso 1.3.2.6
Simplifica el lado derecho.
Paso 1.3.2.6.1
Simplifica (-1-b)(8)+b.
Paso 1.3.2.6.1.1
Simplifica cada término.
Paso 1.3.2.6.1.1.1
Aplica la propiedad distributiva.
125=-1⋅8-b⋅8+b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
Paso 1.3.2.6.1.1.2
Multiplica -1 por 8.
125=-8-b⋅8+b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
Paso 1.3.2.6.1.1.3
Multiplica 8 por -1.
125=-8-8b+b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
125=-8-8b+b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
Paso 1.3.2.6.1.2
Suma -8b y b.
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=a(3)+b
Paso 1.3.2.7
Reemplaza todos los casos de a en 15=a(3)+b por -1-b.
15=(-1-b)(3)+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.2.8
Simplifica el lado derecho.
Paso 1.3.2.8.1
Simplifica (-1-b)(3)+b.
Paso 1.3.2.8.1.1
Simplifica cada término.
Paso 1.3.2.8.1.1.1
Aplica la propiedad distributiva.
15=-1⋅3-b⋅3+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.2.8.1.1.2
Multiplica -1 por 3.
15=-3-b⋅3+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.2.8.1.1.3
Multiplica 3 por -1.
15=-3-3b+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=-3-3b+b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.2.8.1.2
Suma -3b y b.
15=-3-2b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=-3-2b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=-3-2b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
15=-3-2b
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3
Resuelve b en 15=-3-2b.
Paso 1.3.3.1
Reescribe la ecuación como -3-2b=15.
-3-2b=15
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.2
Mueve todos los términos que no contengan b al lado derecho de la ecuación.
Paso 1.3.3.2.1
Suma 3 a ambos lados de la ecuación.
-2b=15+3
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.2.2
Suma 15 y 3.
-2b=18
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
-2b=18
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.3
Divide cada término en -2b=18 por -2 y simplifica.
Paso 1.3.3.3.1
Divide cada término en -2b=18 por -2.
-2b-2=18-2
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.3.2
Simplifica el lado izquierdo.
Paso 1.3.3.3.2.1
Cancela el factor común de -2.
Paso 1.3.3.3.2.1.1
Cancela el factor común.
-2b-2=18-2
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.3.2.1.2
Divide b por 1.
b=18-2
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
b=18-2
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
b=18-2
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.3.3.3
Simplifica el lado derecho.
Paso 1.3.3.3.3.1
Divide 18 por -2.
b=-9
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
b=-9
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
b=-9
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
b=-9
125=-8-7b
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.4
Reemplaza todos los casos de b por -9 en cada ecuación.
Paso 1.3.4.1
Reemplaza todos los casos de b en 125=-8-7b por -9.
125=-8-7⋅-9
b=-9
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.4.2
Simplifica el lado derecho.
Paso 1.3.4.2.1
Simplifica -8-7⋅-9.
Paso 1.3.4.2.1.1
Multiplica -7 por -9.
125=-8+63
b=-9
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.4.2.1.2
Suma -8 y 63.
125=55
b=-9
5=-2-b
159=-9-8b
a=-1-b
125=55
b=-9
5=-2-b
159=-9-8b
a=-1-b
125=55
b=-9
5=-2-b
159=-9-8b
a=-1-b
Paso 1.3.4.3
Reemplaza todos los casos de b en 5=-2-b por -9.
5=-2-(-9)
125=55
b=-9
159=-9-8b
a=-1-b
Paso 1.3.4.4
Simplifica el lado derecho.
Paso 1.3.4.4.1
Simplifica -2-(-9).
Paso 1.3.4.4.1.1
Multiplica -1 por -9.
5=-2+9
125=55
b=-9
159=-9-8b
a=-1-b
Paso 1.3.4.4.1.2
Suma -2 y 9.
5=7
125=55
b=-9
159=-9-8b
a=-1-b
5=7
125=55
b=-9
159=-9-8b
a=-1-b
5=7
125=55
b=-9
159=-9-8b
a=-1-b
Paso 1.3.4.5
Reemplaza todos los casos de b en 159=-9-8b por -9.
159=-9-8⋅-9
5=7
125=55
b=-9
a=-1-b
Paso 1.3.4.6
Simplifica el lado derecho.
Paso 1.3.4.6.1
Simplifica -9-8⋅-9.
Paso 1.3.4.6.1.1
Multiplica -8 por -9.
159=-9+72
5=7
125=55
b=-9
a=-1-b
Paso 1.3.4.6.1.2
Suma -9 y 72.
159=63
5=7
125=55
b=-9
a=-1-b
159=63
5=7
125=55
b=-9
a=-1-b
159=63
5=7
125=55
b=-9
a=-1-b
Paso 1.3.4.7
Reemplaza todos los casos de b en a=-1-b por -9.
a=-1-(-9)
159=63
5=7
125=55
b=-9
Paso 1.3.4.8
Simplifica el lado derecho.
Paso 1.3.4.8.1
Simplifica -1-(-9).
Paso 1.3.4.8.1.1
Multiplica -1 por -9.
a=-1+9
159=63
5=7
125=55
b=-9
Paso 1.3.4.8.1.2
Suma -1 y 9.
a=8
159=63
5=7
125=55
b=-9
a=8
159=63
5=7
125=55
b=-9
a=8
159=63
5=7
125=55
b=-9
a=8
159=63
5=7
125=55
b=-9
Paso 1.3.5
Como 159=63 no es verdadera, no hay una solución.
No hay solución
No hay solución
Paso 1.4
Como y≠q(x) para los valores x correspondientes, la función no es lineal.
La función no es lineal.
La función no es lineal.
Paso 2
Paso 2.1
Para determinar si la tabla sigue una regla de la función, comprueba si la regla de la función podría seguir la forma y=ax2+bx+c.
y=ax2+bx+c
Paso 2.2
Construye un conjunto de 3 ecuaciones a partir de la tabla de modo que q(x)=ax2+bx+c.
Paso 2.3
Calcula los valores de a, b y c.
Paso 2.3.1
Resuelve a en -1=a+b+c.
Paso 2.3.1.1
Reescribe la ecuación como a+b+c=-1.
a+b+c=-1
159=a⋅92+b(9)+c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.1.2
Mueve todos los términos que no contengan a al lado derecho de la ecuación.
Paso 2.3.1.2.1
Resta b de ambos lados de la ecuación.
a+c=-1-b
159=a⋅92+b(9)+c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.1.2.2
Resta c de ambos lados de la ecuación.
a=-1-b-c
159=a⋅92+b(9)+c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
a=-1-b-c
159=a⋅92+b(9)+c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
a=-1-b-c
159=a⋅92+b(9)+c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2
Reemplaza todos los casos de a por -1-b-c en cada ecuación.
Paso 2.3.2.1
Reemplaza todos los casos de a en 159=a⋅92+b(9)+c por -1-b-c.
159=(-1-b-c)⋅92+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2
Simplifica el lado derecho.
Paso 2.3.2.2.1
Simplifica (-1-b-c)⋅92+b(9)+c.
Paso 2.3.2.2.1.1
Simplifica cada término.
Paso 2.3.2.2.1.1.1
Eleva 9 a la potencia de 2.
159=(-1-b-c)⋅81+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.1.2
Aplica la propiedad distributiva.
159=-1⋅81-b⋅81-c⋅81+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.1.3
Simplifica.
Paso 2.3.2.2.1.1.3.1
Multiplica -1 por 81.
159=-81-b⋅81-c⋅81+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.1.3.2
Multiplica 81 por -1.
159=-81-81b-c⋅81+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.1.3.3
Multiplica 81 por -1.
159=-81-81b-81c+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
159=-81-81b-81c+b(9)+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.1.4
Mueve 9 a la izquierda de b.
159=-81-81b-81c+9b+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
159=-81-81b-81c+9b+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.2
Simplifica mediante la adición de términos.
Paso 2.3.2.2.1.2.1
Suma -81b y 9b.
159=-81-72b-81c+c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.2.1.2.2
Suma -81c y c.
159=-81-72b-80c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
159=-81-72b-80c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
159=-81-72b-80c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
159=-81-72b-80c
a=-1-b-c
5=a⋅22+b(2)+c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.3
Reemplaza todos los casos de a en 5=a⋅22+b(2)+c por -1-b-c.
5=(-1-b-c)⋅22+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4
Simplifica el lado derecho.
Paso 2.3.2.4.1
Simplifica (-1-b-c)⋅22+b(2)+c.
Paso 2.3.2.4.1.1
Simplifica cada término.
Paso 2.3.2.4.1.1.1
Eleva 2 a la potencia de 2.
5=(-1-b-c)⋅4+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.1.2
Aplica la propiedad distributiva.
5=-1⋅4-b⋅4-c⋅4+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.1.3
Simplifica.
Paso 2.3.2.4.1.1.3.1
Multiplica -1 por 4.
5=-4-b⋅4-c⋅4+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.1.3.2
Multiplica 4 por -1.
5=-4-4b-c⋅4+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.1.3.3
Multiplica 4 por -1.
5=-4-4b-4c+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
5=-4-4b-4c+b(2)+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.1.4
Mueve 2 a la izquierda de b.
5=-4-4b-4c+2b+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
5=-4-4b-4c+2b+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.2
Simplifica mediante la adición de términos.
Paso 2.3.2.4.1.2.1
Suma -4b y 2b.
5=-4-2b-4c+c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.4.1.2.2
Suma -4c y c.
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=a⋅82+b(8)+c
15=a⋅32+b(3)+c
Paso 2.3.2.5
Reemplaza todos los casos de a en 125=a⋅82+b(8)+c por -1-b-c.
125=(-1-b-c)⋅82+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6
Simplifica el lado derecho.
Paso 2.3.2.6.1
Simplifica (-1-b-c)⋅82+b(8)+c.
Paso 2.3.2.6.1.1
Simplifica cada término.
Paso 2.3.2.6.1.1.1
Eleva 8 a la potencia de 2.
125=(-1-b-c)⋅64+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.1.2
Aplica la propiedad distributiva.
125=-1⋅64-b⋅64-c⋅64+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.1.3
Simplifica.
Paso 2.3.2.6.1.1.3.1
Multiplica -1 por 64.
125=-64-b⋅64-c⋅64+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.1.3.2
Multiplica 64 por -1.
125=-64-64b-c⋅64+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.1.3.3
Multiplica 64 por -1.
125=-64-64b-64c+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
125=-64-64b-64c+b(8)+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.1.4
Mueve 8 a la izquierda de b.
125=-64-64b-64c+8b+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
125=-64-64b-64c+8b+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.2
Simplifica mediante la adición de términos.
Paso 2.3.2.6.1.2.1
Suma -64b y 8b.
125=-64-56b-64c+c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.6.1.2.2
Suma -64c y c.
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=a⋅32+b(3)+c
Paso 2.3.2.7
Reemplaza todos los casos de a en 15=a⋅32+b(3)+c por -1-b-c.
15=(-1-b-c)⋅32+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8
Simplifica el lado derecho.
Paso 2.3.2.8.1
Simplifica (-1-b-c)⋅32+b(3)+c.
Paso 2.3.2.8.1.1
Simplifica cada término.
Paso 2.3.2.8.1.1.1
Eleva 3 a la potencia de 2.
15=(-1-b-c)⋅9+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.1.2
Aplica la propiedad distributiva.
15=-1⋅9-b⋅9-c⋅9+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.1.3
Simplifica.
Paso 2.3.2.8.1.1.3.1
Multiplica -1 por 9.
15=-9-b⋅9-c⋅9+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.1.3.2
Multiplica 9 por -1.
15=-9-9b-c⋅9+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.1.3.3
Multiplica 9 por -1.
15=-9-9b-9c+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-9b-9c+b(3)+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.1.4
Mueve 3 a la izquierda de b.
15=-9-9b-9c+3b+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-9b-9c+3b+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.2
Simplifica mediante la adición de términos.
Paso 2.3.2.8.1.2.1
Suma -9b y 3b.
15=-9-6b-9c+c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.2.8.1.2.2
Suma -9c y c.
15=-9-6b-8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-6b-8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-6b-8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-6b-8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
15=-9-6b-8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3
Resuelve b en 15=-9-6b-8c.
Paso 2.3.3.1
Reescribe la ecuación como -9-6b-8c=15.
-9-6b-8c=15
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.2
Mueve todos los términos que no contengan b al lado derecho de la ecuación.
Paso 2.3.3.2.1
Suma 9 a ambos lados de la ecuación.
-6b-8c=15+9
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.2.2
Suma 8c a ambos lados de la ecuación.
-6b=15+9+8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.2.3
Suma 15 y 9.
-6b=24+8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
-6b=24+8c
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3
Divide cada término en -6b=24+8c por -6 y simplifica.
Paso 2.3.3.3.1
Divide cada término en -6b=24+8c por -6.
-6b-6=24-6+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.2
Simplifica el lado izquierdo.
Paso 2.3.3.3.2.1
Cancela el factor común de -6.
Paso 2.3.3.3.2.1.1
Cancela el factor común.
-6b-6=24-6+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.2.1.2
Divide b por 1.
b=24-6+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=24-6+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=24-6+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3
Simplifica el lado derecho.
Paso 2.3.3.3.3.1
Simplifica cada término.
Paso 2.3.3.3.3.1.1
Divide 24 por -6.
b=-4+8c-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3.1.2
Cancela el factor común de 8 y -6.
Paso 2.3.3.3.3.1.2.1
Factoriza 2 de 8c.
b=-4+2(4c)-6
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3.1.2.2
Cancela los factores comunes.
Paso 2.3.3.3.3.1.2.2.1
Factoriza 2 de -6.
b=-4+2(4c)2(-3)
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3.1.2.2.2
Cancela el factor común.
b=-4+2(4c)2⋅-3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3.1.2.2.3
Reescribe la expresión.
b=-4+4c-3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4+4c-3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4+4c-3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.3.3.3.1.3
Mueve el negativo al frente de la fracción.
b=-4-4c3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4-4c3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4-4c3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4-4c3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
b=-4-4c3
125=-64-56b-63c
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4
Reemplaza todos los casos de b por -4-4c3 en cada ecuación.
Paso 2.3.4.1
Reemplaza todos los casos de b en 125=-64-56b-63c por -4-4c3.
125=-64-56(-4-4c3)-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2
Simplifica el lado derecho.
Paso 2.3.4.2.1
Simplifica -64-56(-4-4c3)-63c.
Paso 2.3.4.2.1.1
Simplifica cada término.
Paso 2.3.4.2.1.1.1
Aplica la propiedad distributiva.
125=-64-56⋅-4-56(-4c3)-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.1.2
Multiplica -56 por -4.
125=-64+224-56(-4c3)-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.1.3
Multiplica -56(-4c3).
Paso 2.3.4.2.1.1.3.1
Multiplica -1 por -56.
125=-64+224+56(4c3)-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.1.3.2
Combina 56 y 4c3.
125=-64+224+56(4c)3-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.1.3.3
Multiplica 4 por 56.
125=-64+224+224c3-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=-64+224+224c3-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=-64+224+224c3-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.2
Suma -64 y 224.
125=160+224c3-63c
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.3
Para escribir -63c como una fracción con un denominador común, multiplica por 33.
125=160+224c3-63c⋅33
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.4
Simplifica los términos.
Paso 2.3.4.2.1.4.1
Combina -63c y 33.
125=160+224c3+-63c⋅33
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.4.2
Combina los numeradores sobre el denominador común.
125=160+224c-63c⋅33
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=160+224c-63c⋅33
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5
Simplifica el numerador.
Paso 2.3.4.2.1.5.1
Factoriza 7c de 224c-63c⋅3.
Paso 2.3.4.2.1.5.1.1
Factoriza 7c de 224c.
125=160+7c(32)-63c⋅33
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5.1.2
Factoriza 7c de -63c⋅3.
125=160+7c(32)+7c(-9⋅3)3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5.1.3
Factoriza 7c de 7c(32)+7c(-9⋅3).
125=160+7c(32-9⋅3)3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=160+7c(32-9⋅3)3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5.2
Multiplica -9 por 3.
125=160+7c(32-27)3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5.3
Resta 27 de 32.
125=160+7c⋅53
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.2.1.5.4
Multiplica 5 por 7.
125=160+35c3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=160+35c3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=160+35c3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
125=160+35c3
b=-4-4c3
5=-4-2b-3c
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.3
Reemplaza todos los casos de b en 5=-4-2b-3c por -4-4c3.
5=-4-2(-4-4c3)-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4
Simplifica el lado derecho.
Paso 2.3.4.4.1
Simplifica -4-2(-4-4c3)-3c.
Paso 2.3.4.4.1.1
Simplifica cada término.
Paso 2.3.4.4.1.1.1
Aplica la propiedad distributiva.
5=-4-2⋅-4-2(-4c3)-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.1.2
Multiplica -2 por -4.
5=-4+8-2(-4c3)-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.1.3
Multiplica -2(-4c3).
Paso 2.3.4.4.1.1.3.1
Multiplica -1 por -2.
5=-4+8+2(4c3)-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.1.3.2
Combina 2 y 4c3.
5=-4+8+2(4c)3-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.1.3.3
Multiplica 4 por 2.
5=-4+8+8c3-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=-4+8+8c3-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=-4+8+8c3-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.2
Suma -4 y 8.
5=4+8c3-3c
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.3
Para escribir -3c como una fracción con un denominador común, multiplica por 33.
5=4+8c3-3c⋅33
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.4
Simplifica los términos.
Paso 2.3.4.4.1.4.1
Combina -3c y 33.
5=4+8c3+-3c⋅33
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.4.2
Combina los numeradores sobre el denominador común.
5=4+8c-3c⋅33
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4+8c-3c⋅33
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5
Simplifica cada término.
Paso 2.3.4.4.1.5.1
Simplifica el numerador.
Paso 2.3.4.4.1.5.1.1
Factoriza c de 8c-3c⋅3.
Paso 2.3.4.4.1.5.1.1.1
Factoriza c de 8c.
5=4+c⋅8-3c⋅33
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.1.1.2
Factoriza c de -3c⋅3.
5=4+c⋅8+c(-3⋅3)3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.1.1.3
Factoriza c de c⋅8+c(-3⋅3).
5=4+c(8-3⋅3)3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4+c(8-3⋅3)3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.1.2
Multiplica -3 por 3.
5=4+c(8-9)3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.1.3
Resta 9 de 8.
5=4+c⋅-13
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4+c⋅-13
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.2
Mueve -1 a la izquierda de c.
5=4+-1⋅c3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.4.1.5.3
Mueve el negativo al frente de la fracción.
5=4-c3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4-c3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4-c3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
5=4-c3
125=160+35c3
b=-4-4c3
159=-81-72b-80c
a=-1-b-c
Paso 2.3.4.5
Reemplaza todos los casos de b en 159=-81-72b-80c por -4-4c3.
159=-81-72(-4-4c3)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6
Simplifica el lado derecho.
Paso 2.3.4.6.1
Simplifica -81-72(-4-4c3)-80c.
Paso 2.3.4.6.1.1
Simplifica cada término.
Paso 2.3.4.6.1.1.1
Aplica la propiedad distributiva.
159=-81-72⋅-4-72(-4c3)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.2
Multiplica -72 por -4.
159=-81+288-72(-4c3)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.3
Cancela el factor común de 3.
Paso 2.3.4.6.1.1.3.1
Mueve el signo menos inicial en -4c3 al numerador.
159=-81+288-72-4c3-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.3.2
Factoriza 3 de -72.
159=-81+288+3(-24)(-4c3)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.3.3
Cancela el factor común.
159=-81+288+3⋅(-24-4c3)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.3.4
Reescribe la expresión.
159=-81+288-24(-4c)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
159=-81+288-24(-4c)-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.1.4
Multiplica -4 por -24.
159=-81+288+96c-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
159=-81+288+96c-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.2
Simplifica mediante la adición de términos.
Paso 2.3.4.6.1.2.1
Suma -81 y 288.
159=207+96c-80c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.6.1.2.2
Resta 80c de 96c.
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1-b-c
Paso 2.3.4.7
Reemplaza todos los casos de b en a=-1-b-c por -4-4c3.
a=-1-(-4-4c3)-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8
Simplifica el lado derecho.
Paso 2.3.4.8.1
Simplifica -1-(-4-4c3)-c.
Paso 2.3.4.8.1.1
Simplifica cada término.
Paso 2.3.4.8.1.1.1
Aplica la propiedad distributiva.
a=-1+4+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.1.2
Multiplica -1 por -4.
a=-1+4+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.1.3
Multiplica --4c3.
Paso 2.3.4.8.1.1.3.1
Multiplica -1 por -1.
a=-1+4+1(4c3)-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.1.3.2
Multiplica 4c3 por 1.
a=-1+4+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1+4+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=-1+4+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.2
Suma -1 y 4.
a=3+4c3-c
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.3
Para escribir -c como una fracción con un denominador común, multiplica por 33.
a=3+4c3-c⋅33
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.4
Simplifica los términos.
Paso 2.3.4.8.1.4.1
Combina -c y 33.
a=3+4c3+-c⋅33
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.4.2
Combina los numeradores sobre el denominador común.
a=3+4c-c⋅33
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+4c-c⋅33
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5
Simplifica cada término.
Paso 2.3.4.8.1.5.1
Simplifica el numerador.
Paso 2.3.4.8.1.5.1.1
Factoriza c de 4c-c⋅3.
Paso 2.3.4.8.1.5.1.1.1
Factoriza c de 4c.
a=3+c⋅4-c⋅33
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5.1.1.2
Factoriza c de -c⋅3.
a=3+c⋅4+c(-1⋅3)3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5.1.1.3
Factoriza c de c⋅4+c(-1⋅3).
a=3+c(4-1⋅3)3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c(4-1⋅3)3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5.1.2
Multiplica -1 por 3.
a=3+c(4-3)3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5.1.3
Resta 3 de 4.
a=3+c⋅13
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c⋅13
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.4.8.1.5.2
Multiplica c por 1.
a=3+c3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
a=3+c3
159=207+16c
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5
Resuelve c en 159=207+16c.
Paso 2.3.5.1
Reescribe la ecuación como 207+16c=159.
207+16c=159
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.2
Mueve todos los términos que no contengan c al lado derecho de la ecuación.
Paso 2.3.5.2.1
Resta 207 de ambos lados de la ecuación.
16c=159-207
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.2.2
Resta 207 de 159.
16c=-48
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
16c=-48
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.3
Divide cada término en 16c=-48 por 16 y simplifica.
Paso 2.3.5.3.1
Divide cada término en 16c=-48 por 16.
16c16=-4816
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.3.2
Simplifica el lado izquierdo.
Paso 2.3.5.3.2.1
Cancela el factor común de 16.
Paso 2.3.5.3.2.1.1
Cancela el factor común.
16c16=-4816
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.3.2.1.2
Divide c por 1.
c=-4816
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
c=-4816
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
c=-4816
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.5.3.3
Simplifica el lado derecho.
Paso 2.3.5.3.3.1
Divide -48 por 16.
c=-3
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
c=-3
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
c=-3
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
c=-3
a=3+c3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.6
Reemplaza todos los casos de c por -3 en cada ecuación.
Paso 2.3.6.1
Reemplaza todos los casos de c en a=3+c3 por -3.
a=3+-33
c=-3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.6.2
Simplifica el lado derecho.
Paso 2.3.6.2.1
Simplifica 3+-33.
Paso 2.3.6.2.1.1
Divide -3 por 3.
a=3-1
c=-3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.6.2.1.2
Resta 1 de 3.
a=2
c=-3
5=4-c3
125=160+35c3
b=-4-4c3
a=2
c=-3
5=4-c3
125=160+35c3
b=-4-4c3
a=2
c=-3
5=4-c3
125=160+35c3
b=-4-4c3
Paso 2.3.6.3
Reemplaza todos los casos de c en 5=4-c3 por -3.
5=4--33
a=2
c=-3
125=160+35c3
b=-4-4c3
Paso 2.3.6.4
Simplifica el lado derecho.
Paso 2.3.6.4.1
Simplifica 4--33.
Paso 2.3.6.4.1.1
Simplifica cada término.
Paso 2.3.6.4.1.1.1
Divide -3 por 3.
5=4+1
a=2
c=-3
125=160+35c3
b=-4-4c3
Paso 2.3.6.4.1.1.2
Multiplica -1 por -1.
5=4+1
a=2
c=-3
125=160+35c3
b=-4-4c3
5=4+1
a=2
c=-3
125=160+35c3
b=-4-4c3
Paso 2.3.6.4.1.2
Suma 4 y 1.
5=5
a=2
c=-3
125=160+35c3
b=-4-4c3
5=5
a=2
c=-3
125=160+35c3
b=-4-4c3
5=5
a=2
c=-3
125=160+35c3
b=-4-4c3
Paso 2.3.6.5
Reemplaza todos los casos de c en 125=160+35c3 por -3.
125=160+35(-3)3
5=5
a=2
c=-3
b=-4-4c3
Paso 2.3.6.6
Simplifica el lado derecho.
Paso 2.3.6.6.1
Simplifica 160+35(-3)3.
Paso 2.3.6.6.1.1
Multiplica 35 por -3.
125=160+-1053
5=5
a=2
c=-3
b=-4-4c3
Paso 2.3.6.6.1.2
Divide -105 por 3.
125=160-35
5=5
a=2
c=-3
b=-4-4c3
Paso 2.3.6.6.1.3
Resta 35 de 160.
125=125
5=5
a=2
c=-3
b=-4-4c3
125=125
5=5
a=2
c=-3
b=-4-4c3
125=125
5=5
a=2
c=-3
b=-4-4c3
Paso 2.3.6.7
Reemplaza todos los casos de c en b=-4-4c3 por -3.
b=-4-4(-3)3
125=125
5=5
a=2
c=-3
Paso 2.3.6.8
Simplifica el lado derecho.
Paso 2.3.6.8.1
Simplifica -4-4(-3)3.
Paso 2.3.6.8.1.1
Simplifica cada término.
Paso 2.3.6.8.1.1.1
Cancela el factor común de -3 y 3.
Paso 2.3.6.8.1.1.1.1
Factoriza 3 de 4(-3).
b=-4-3(4⋅(-1))3
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.1.2
Cancela los factores comunes.
Paso 2.3.6.8.1.1.1.2.1
Factoriza 3 de 3.
b=-4-3(4⋅(-1))3(1)
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.1.2.2
Cancela el factor común.
b=-4-3(4⋅(-1))3⋅1
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.1.2.3
Reescribe la expresión.
b=-4-4⋅(-1)1
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.1.2.4
Divide 4⋅(-1) por 1.
b=-4-(4⋅(-1))
125=125
5=5
a=2
c=-3
b=-4-(4⋅(-1))
125=125
5=5
a=2
c=-3
b=-4-(4⋅(-1))
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.2
Multiplica -(4⋅(-1)).
Paso 2.3.6.8.1.1.2.1
Multiplica 4 por -1.
b=-4+4
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.1.2.2
Multiplica -1 por -4.
b=-4+4
125=125
5=5
a=2
c=-3
b=-4+4
125=125
5=5
a=2
c=-3
b=-4+4
125=125
5=5
a=2
c=-3
Paso 2.3.6.8.1.2
Suma -4 y 4.
b=0
125=125
5=5
a=2
c=-3
b=0
125=125
5=5
a=2
c=-3
b=0
125=125
5=5
a=2
c=-3
b=0
125=125
5=5
a=2
c=-3
Paso 2.3.7
Elimina del sistema las ecuaciones que siempre son verdaderas.
b=0
a=2
c=-3
Paso 2.3.8
Enumera todas las soluciones.
b=0,a=2,c=-3
b=0,a=2,c=-3
Paso 2.4
Calcula el valor de y con cada valor de x en la tabla y compara este valor con el valor de q(x) dado en la tabla.
Paso 2.4.1
Calcula el valor de y tal que y=ax2+b cuando a=2, b=0, c=-3 y x=1.
Paso 2.4.1.1
Simplifica cada término.
Paso 2.4.1.1.1
Uno elevado a cualquier potencia es uno.
y=2⋅1+(0)⋅(1)-3
Paso 2.4.1.1.2
Multiplica 2 por 1.
y=2+(0)⋅(1)-3
Paso 2.4.1.1.3
Multiplica 0 por 1.
y=2+0-3
y=2+0-3
Paso 2.4.1.2
Simplifica mediante suma y resta.
Paso 2.4.1.2.1
Suma 2 y 0.
y=2-3
Paso 2.4.1.2.2
Resta 3 de 2.
y=-1
y=-1
y=-1
Paso 2.4.2
Si la tabla tiene una regla de la función cuadrática, y=q(x) para el valor correspondiente de x, x=1. Esta verificación pasa, ya que y=-1 y q(x)=-1.
-1=-1
Paso 2.4.3
Calcula el valor de y tal que y=ax2+b cuando a=2, b=0, c=-3 y x=9.
Paso 2.4.3.1
Simplifica cada término.
Paso 2.4.3.1.1
Eleva 9 a la potencia de 2.
y=2⋅81+(0)⋅(9)-3
Paso 2.4.3.1.2
Multiplica 2 por 81.
y=162+(0)⋅(9)-3
Paso 2.4.3.1.3
Multiplica 0 por 9.
y=162+0-3
y=162+0-3
Paso 2.4.3.2
Simplifica mediante suma y resta.
Paso 2.4.3.2.1
Suma 162 y 0.
y=162-3
Paso 2.4.3.2.2
Resta 3 de 162.
y=159
y=159
y=159
Paso 2.4.4
Si la tabla tiene una regla de la función cuadrática, y=q(x) para el valor correspondiente de x, x=9. Esta verificación pasa, ya que y=159 y q(x)=159.
159=159
Paso 2.4.5
Calcula el valor de y tal que y=ax2+b cuando a=2, b=0, c=-3 y x=2.
Paso 2.4.5.1
Simplifica cada término.
Paso 2.4.5.1.1
Multiplica 2 por (2)2 sumando los exponentes.
Paso 2.4.5.1.1.1
Multiplica 2 por (2)2.
Paso 2.4.5.1.1.1.1
Eleva 2 a la potencia de 1.
y=2⋅(2)2+(0)⋅(2)-3
Paso 2.4.5.1.1.1.2
Usa la regla de la potencia aman=am+n para combinar exponentes.
y=21+2+(0)⋅(2)-3
y=21+2+(0)⋅(2)-3
Paso 2.4.5.1.1.2
Suma 1 y 2.
y=23+(0)⋅(2)-3
y=23+(0)⋅(2)-3
Paso 2.4.5.1.2
Eleva 2 a la potencia de 3.
y=8+(0)⋅(2)-3
Paso 2.4.5.1.3
Multiplica 0 por 2.
y=8+0-3
y=8+0-3
Paso 2.4.5.2
Simplifica mediante suma y resta.
Paso 2.4.5.2.1
Suma 8 y 0.
y=8-3
Paso 2.4.5.2.2
Resta 3 de 8.
y=5
y=5
y=5
Paso 2.4.6
Si la tabla tiene una regla de la función cuadrática, y=q(x) para el valor correspondiente de x, x=2. Esta verificación pasa, ya que y=5 y q(x)=5.
5=5
Paso 2.4.7
Calcula el valor de y tal que y=ax2+b cuando a=2, b=0, c=-3 y x=8.
Paso 2.4.7.1
Simplifica cada término.
Paso 2.4.7.1.1
Eleva 8 a la potencia de 2.
y=2⋅64+(0)⋅(8)-3
Paso 2.4.7.1.2
Multiplica 2 por 64.
y=128+(0)⋅(8)-3
Paso 2.4.7.1.3
Multiplica 0 por 8.
y=128+0-3
y=128+0-3
Paso 2.4.7.2
Simplifica mediante suma y resta.
Paso 2.4.7.2.1
Suma 128 y 0.
y=128-3
Paso 2.4.7.2.2
Resta 3 de 128.
y=125
y=125
y=125
Paso 2.4.8
Si la tabla tiene una regla de la función cuadrática, y=q(x) para el valor correspondiente de x, x=8. Esta verificación pasa, ya que y=125 y q(x)=125.
125=125
Paso 2.4.9
Calcula el valor de y tal que y=ax2+b cuando a=2, b=0, c=-3 y x=3.
Paso 2.4.9.1
Simplifica cada término.
Paso 2.4.9.1.1
Eleva 3 a la potencia de 2.
y=2⋅9+(0)⋅(3)-3
Paso 2.4.9.1.2
Multiplica 2 por 9.
y=18+(0)⋅(3)-3
Paso 2.4.9.1.3
Multiplica 0 por 3.
y=18+0-3
y=18+0-3
Paso 2.4.9.2
Simplifica mediante suma y resta.
Paso 2.4.9.2.1
Suma 18 y 0.
y=18-3
Paso 2.4.9.2.2
Resta 3 de 18.
y=15
y=15
y=15
Paso 2.4.10
Si la tabla tiene una regla de la función cuadrática, y=q(x) para el valor correspondiente de x, x=3. Esta verificación pasa, ya que y=15 y q(x)=15.
15=15
Paso 2.4.11
Como y=q(x) para los valores x correspondientes, la función es cuadrática.
La función es cuadrática.
La función es cuadrática.
La función es cuadrática.
Paso 3
Como todas y=q(x), la función es cuadrática y sigue la forma y=2x2-3.
y=2x2-3