Álgebra Ejemplos
x=9x=9 , x=-9x=−9 , x=2x=2
Paso 1
Como las raíces de una ecuación son los puntos en los que la solución es 00, establece cada raíz como un factor de la ecuación que sea igual a 00.
(x-9)(x-(-9))(x-2)=0(x−9)(x−(−9))(x−2)=0
Paso 2
Paso 2.1
Expande (x-9)(x+9)(x−9)(x+9) con el método PEIU (primero, exterior, interior, ultimo).
Paso 2.1.1
Aplica la propiedad distributiva.
(x(x+9)-9(x+9))(x-2)=0(x(x+9)−9(x+9))(x−2)=0
Paso 2.1.2
Aplica la propiedad distributiva.
(x⋅x+x⋅9-9(x+9))(x-2)=0(x⋅x+x⋅9−9(x+9))(x−2)=0
Paso 2.1.3
Aplica la propiedad distributiva.
(x⋅x+x⋅9-9x-9⋅9)(x-2)=0(x⋅x+x⋅9−9x−9⋅9)(x−2)=0
(x⋅x+x⋅9-9x-9⋅9)(x-2)=0(x⋅x+x⋅9−9x−9⋅9)(x−2)=0
Paso 2.2
Simplifica los términos.
Paso 2.2.1
Combina los términos opuestos en x⋅x+x⋅9-9x-9⋅9x⋅x+x⋅9−9x−9⋅9.
Paso 2.2.1.1
Reordena los factores en los términos x⋅9x⋅9 y -9x−9x.
(x⋅x+9x-9x-9⋅9)(x-2)=0(x⋅x+9x−9x−9⋅9)(x−2)=0
Paso 2.2.1.2
Resta 9x9x de 9x9x.
(x⋅x+0-9⋅9)(x-2)=0(x⋅x+0−9⋅9)(x−2)=0
Paso 2.2.1.3
Suma x⋅xx⋅x y 00.
(x⋅x-9⋅9)(x-2)=0(x⋅x−9⋅9)(x−2)=0
(x⋅x-9⋅9)(x-2)=0(x⋅x−9⋅9)(x−2)=0
Paso 2.2.2
Simplifica cada término.
Paso 2.2.2.1
Multiplica xx por xx.
(x2-9⋅9)(x-2)=0(x2−9⋅9)(x−2)=0
Paso 2.2.2.2
Multiplica -9−9 por 99.
(x2-81)(x-2)=0(x2−81)(x−2)=0
(x2-81)(x-2)=0(x2−81)(x−2)=0
(x2-81)(x-2)=0(x2−81)(x−2)=0
Paso 2.3
Expande (x2-81)(x-2)(x2−81)(x−2) con el método PEIU (primero, exterior, interior, ultimo).
Paso 2.3.1
Aplica la propiedad distributiva.
x2(x-2)-81(x-2)=0x2(x−2)−81(x−2)=0
Paso 2.3.2
Aplica la propiedad distributiva.
x2x+x2⋅-2-81(x-2)=0x2x+x2⋅−2−81(x−2)=0
Paso 2.3.3
Aplica la propiedad distributiva.
x2x+x2⋅-2-81x-81⋅-2=0x2x+x2⋅−2−81x−81⋅−2=0
x2x+x2⋅-2-81x-81⋅-2=0x2x+x2⋅−2−81x−81⋅−2=0
Paso 2.4
Simplifica cada término.
Paso 2.4.1
Multiplica x2x2 por xx sumando los exponentes.
Paso 2.4.1.1
Multiplica x2x2 por xx.
Paso 2.4.1.1.1
Eleva xx a la potencia de 11.
x2x+x2⋅-2-81x-81⋅-2=0x2x+x2⋅−2−81x−81⋅−2=0
Paso 2.4.1.1.2
Usa la regla de la potencia aman=am+naman=am+n para combinar exponentes.
x2+1+x2⋅-2-81x-81⋅-2=0x2+1+x2⋅−2−81x−81⋅−2=0
x2+1+x2⋅-2-81x-81⋅-2=0x2+1+x2⋅−2−81x−81⋅−2=0
Paso 2.4.1.2
Suma 22 y 11.
x3+x2⋅-2-81x-81⋅-2=0x3+x2⋅−2−81x−81⋅−2=0
x3+x2⋅-2-81x-81⋅-2=0x3+x2⋅−2−81x−81⋅−2=0
Paso 2.4.2
Mueve -2−2 a la izquierda de x2x2.
x3-2⋅x2-81x-81⋅-2=0x3−2⋅x2−81x−81⋅−2=0
Paso 2.4.3
Multiplica -81−81 por -2−2.
x3-2x2-81x+162=0x3−2x2−81x+162=0
x3-2x2-81x+162=0x3−2x2−81x+162=0
x3-2x2-81x+162=0x3−2x2−81x+162=0