Álgebra Ejemplos

[413144441]413144441
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4441|4441
Paso 1.1.4
Multiply element a11a11 by its cofactor.
4|4441|44441
Paso 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1441|1441
Paso 1.1.6
Multiply element a12a12 by its cofactor.
-1|1441|11441
Paso 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1444|1444
Paso 1.1.8
Multiply element a13a13 by its cofactor.
3|1444|31444
Paso 1.1.9
Add the terms together.
4|4441|-1|1441|+3|1444|4444111441+31444
4|4441|-1|1441|+3|1444|4444111441+31444
Paso 1.2
Evalúa |4441|4441.
Toca para ver más pasos...
Paso 1.2.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
4(41-44)-1|1441|+3|1444|4(4144)11441+31444
Paso 1.2.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.2.1.1
Multiplica 44 por 11.
4(4-44)-1|1441|+3|1444|4(444)11441+31444
Paso 1.2.2.1.2
Multiplica -44 por 44.
4(4-16)-1|1441|+3|1444|4(416)11441+31444
4(4-16)-1|1441|+3|1444|4(416)11441+31444
Paso 1.2.2.2
Resta 1616 de 44.
4-12-1|1441|+3|1444|41211441+31444
4-12-1|1441|+3|1444|41211441+31444
4-12-1|1441|+3|1444|41211441+31444
Paso 1.3
Evalúa |1441|1441.
Toca para ver más pasos...
Paso 1.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
4-12-1(11-44)+3|1444|4121(1144)+31444
Paso 1.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.1.1
Multiplica 11 por 11.
4-12-1(1-44)+3|1444|4121(144)+31444
Paso 1.3.2.1.2
Multiplica -44 por 44.
4-12-1(1-16)+3|1444|4121(116)+31444
4-12-1(1-16)+3|1444|4121(116)+31444
Paso 1.3.2.2
Resta 1616 de 11.
4-12-1-15+3|1444|412115+31444
4-12-1-15+3|1444|412115+31444
4-12-1-15+3|1444|412115+31444
Paso 1.4
Evalúa |1444|1444.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
4-12-1-15+3(14-44)412115+3(1444)
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 44 por 11.
4-12-1-15+3(4-44)412115+3(444)
Paso 1.4.2.1.2
Multiplica -44 por 44.
4-12-1-15+3(4-16)412115+3(416)
4-12-1-15+3(4-16)412115+3(416)
Paso 1.4.2.2
Resta 1616 de 44.
4-12-1-15+3-12412115+312
4-12-1-15+3-12412115+312
4-12-1-15+3-12412115+312
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.1.1
Multiplica 44 por -1212.
-48-1-15+3-1248115+312
Paso 1.5.1.2
Multiplica -11 por -1515.
-48+15+3-1248+15+312
Paso 1.5.1.3
Multiplica 33 por -1212.
-48+15-3648+1536
-48+15-3648+1536
Paso 1.5.2
Suma -4848 y 1515.
-33-363336
Paso 1.5.3
Resta 3636 de -3333.
-6969
-6969
-6969
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[413100144010441001]413100144010441001
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Toca para ver más pasos...
Paso 4.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[441434140404144010441001]⎢ ⎢441434140404144010441001⎥ ⎥
Paso 4.1.2
Simplifica R1R1.
[114341400144010441001]⎢ ⎢114341400144010441001⎥ ⎥
[114341400144010441001]⎢ ⎢114341400144010441001⎥ ⎥
Paso 4.2
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
[1143414001-14-144-340-141-00-0441001]⎢ ⎢114341400114144340141000441001⎥ ⎥
Paso 4.2.2
Simplifica R2R2.
[1143414000154134-1410441001]⎢ ⎢11434140001541341410441001⎥ ⎥
[1143414000154134-1410441001]⎢ ⎢11434140001541341410441001⎥ ⎥
Paso 4.3
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
Toca para ver más pasos...
Paso 4.3.1
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
[1143414000154134-14104-414-4(14)1-4(34)0-4(14)0-401-40]⎢ ⎢ ⎢ ⎢1143414000154134141044144(14)14(34)04(14)040140⎥ ⎥ ⎥ ⎥
Paso 4.3.2
Simplifica R3R3.
[1143414000154134-141003-2-101]⎢ ⎢11434140001541341410032101⎥ ⎥
[1143414000154134-141003-2-101]⎢ ⎢11434140001541341410032101⎥ ⎥
Paso 4.4
Multiply each element of R2R2 by 415415 to make the entry at 2,22,2 a 11.
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of R2R2 by 415415 to make the entry at 2,22,2 a 11.
[1143414004150415154415134415(-14)4151415003-2-101]⎢ ⎢1143414004150415154415134415(14)41514150032101⎥ ⎥
Paso 4.4.2
Simplifica R2R2.
[114341400011315-115415003-2-101]⎢ ⎢1143414000113151154150032101⎥ ⎥
[114341400011315-115415003-2-101]⎢ ⎢1143414000113151154150032101⎥ ⎥
Paso 4.5
Perform the row operation R3=R3-3R2R3=R33R2 to make the entry at 3,23,2 a 00.
Toca para ver más pasos...
Paso 4.5.1
Perform the row operation R3=R3-3R2R3=R33R2 to make the entry at 3,23,2 a 00.
[114341400011315-11541500-303-31-2-3(1315)-1-3(-115)0-3(415)1-30]⎢ ⎢ ⎢ ⎢114341400011315115415003033123(1315)13(115)03(415)130⎥ ⎥ ⎥ ⎥
Paso 4.5.2
Simplifica R3R3.
[114341400011315-115415000-235-45-451]⎢ ⎢ ⎢11434140001131511541500023545451⎥ ⎥ ⎥
[114341400011315-115415000-235-45-451]⎢ ⎢ ⎢11434140001131511541500023545451⎥ ⎥ ⎥
Paso 4.6
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
Toca para ver más pasos...
Paso 4.6.1
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
[114341400011315-1154150-5230-5230-523(-235)-523(-45)-523(-45)-5231]
Paso 4.6.2
Simplifica R3.
[114341400011315-1154150001423423-523]
[114341400011315-1154150001423423-523]
Paso 4.7
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
[1143414000-131501-131501315-13151-115-1315423415-13154230-1315(-523)001423423-523]
Paso 4.7.2
Simplifica R2.
[114341400010-5238691369001423423-523]
[114341400010-5238691369001423423-523]
Paso 4.8
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
Toca para ver más pasos...
Paso 4.8.1
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
[1-34014-34034-34114-344230-344230-34(-523)010-5238691369001423423-523]
Paso 4.8.2
Simplifica R1.
[11401192-3231592010-5238691369001423423-523]
[11401192-3231592010-5238691369001423423-523]
Paso 4.9
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
Toca para ver más pasos...
Paso 4.9.1
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
[1-14014-1410-1401192-14(-523)-323-148691592-141369010-5238691369001423423-523]
Paso 4.9.2
Simplifica R1.
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
Paso 5
The right half of the reduced row echelon form is the inverse.
[423-1169869-5238691369423423-523]
Ingresa TU problema
using Amazon.Auth.AccessControlPolicy;
Mathway requiere JavaScript y un navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay