Álgebra Ejemplos

Paso 1
Establece la fórmula para obtener la ecuación característica .
Paso 2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 3
Sustituye los valores conocidos en .
Toca para ver más pasos...
Paso 3.1
Sustituye por .
Paso 3.2
Sustituye por .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Multiplica por cada elemento de la matriz.
Paso 4.1.2
Simplifica cada elemento de la matriz.
Toca para ver más pasos...
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.2.1
Multiplica por .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.3
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.4.1
Multiplica por .
Paso 4.1.2.4.2
Multiplica por .
Paso 4.1.2.5
Multiplica por .
Paso 4.1.2.6
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.6.1
Multiplica por .
Paso 4.1.2.6.2
Multiplica por .
Paso 4.1.2.7
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.7.1
Multiplica por .
Paso 4.1.2.7.2
Multiplica por .
Paso 4.1.2.8
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.8.1
Multiplica por .
Paso 4.1.2.8.2
Multiplica por .
Paso 4.1.2.9
Multiplica por .
Paso 4.2
Suma los elementos correspondientes.
Paso 4.3
Simplifica cada elemento.
Toca para ver más pasos...
Paso 4.3.1
Suma y .
Paso 4.3.2
Suma y .
Paso 4.3.3
Suma y .
Paso 4.3.4
Resta de .
Paso 4.3.5
Suma y .
Paso 4.3.6
Suma y .
Paso 4.3.7
Suma y .
Paso 5
Obtén el determinante.
Toca para ver más pasos...
Paso 5.1
Elige la fila o columna con más elementos . Si no hay elementos , elige cualquier fila o columna. Multiplica cada elemento en la columna por su cofactor y suma.
Toca para ver más pasos...
Paso 5.1.1
Considera el cuadro de signos correspondiente.
Paso 5.1.2
El cofactor es el elemento menor con el signo cambiado si los índices coinciden con una posición en el cuadro de signos.
Paso 5.1.3
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.4
Multiplica el elemento por su cofactor.
Paso 5.1.5
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.6
Multiplica el elemento por su cofactor.
Paso 5.1.7
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.8
Multiplica el elemento por su cofactor.
Paso 5.1.9
Suma los términos juntos.
Paso 5.2
Multiplica por .
Paso 5.3
Evalúa .
Toca para ver más pasos...
Paso 5.3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.2.1.1
Aplica la propiedad distributiva.
Paso 5.3.2.1.2
Multiplica por .
Paso 5.3.2.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.3.2.1.4
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.2.1.4.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.3.2.1.4.1.1
Mueve .
Paso 5.3.2.1.4.1.2
Multiplica por .
Paso 5.3.2.1.4.2
Multiplica por .
Paso 5.3.2.1.4.3
Multiplica por .
Paso 5.3.2.1.5
Multiplica por .
Paso 5.3.2.2
Suma y .
Paso 5.3.2.3
Reordena y .
Paso 5.4
Evalúa .
Toca para ver más pasos...
Paso 5.4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.2.1.1
Aplica la propiedad distributiva.
Paso 5.4.2.1.2
Multiplica por .
Paso 5.4.2.1.3
Multiplica por .
Paso 5.4.2.1.4
Multiplica por .
Paso 5.4.2.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.4.2.2.1
Resta de .
Paso 5.4.2.2.2
Suma y .
Paso 5.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.5.1
Suma y .
Paso 5.5.2
Simplifica cada término.
Toca para ver más pasos...
Paso 5.5.2.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 5.5.2.1.1
Aplica la propiedad distributiva.
Paso 5.5.2.1.2
Aplica la propiedad distributiva.
Paso 5.5.2.1.3
Aplica la propiedad distributiva.
Paso 5.5.2.2
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 5.5.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.5.2.2.1.1
Multiplica por .
Paso 5.5.2.2.1.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.5.2.2.1.2.1
Mueve .
Paso 5.5.2.2.1.2.2
Multiplica por .
Toca para ver más pasos...
Paso 5.5.2.2.1.2.2.1
Eleva a la potencia de .
Paso 5.5.2.2.1.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.5.2.2.1.2.3
Suma y .
Paso 5.5.2.2.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.5.2.2.1.4
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.5.2.2.1.4.1
Mueve .
Paso 5.5.2.2.1.4.2
Multiplica por .
Paso 5.5.2.2.1.5
Multiplica por .
Paso 5.5.2.2.1.6
Multiplica por .
Paso 5.5.2.2.2
Suma y .
Paso 5.5.2.3
Multiplica por .
Paso 5.5.3
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.5.3.1
Suma y .
Paso 5.5.3.2
Suma y .
Paso 5.5.4
Reordena y .
Paso 6
Establece el polinomio característico igual a para obtener los valores propios .
Paso 7
Resuelve
Toca para ver más pasos...
Paso 7.1
Factoriza de .
Toca para ver más pasos...
Paso 7.1.1
Factoriza de .
Paso 7.1.2
Factoriza de .
Paso 7.1.3
Factoriza de .
Paso 7.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 7.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 7.3.1
Establece igual a .
Paso 7.3.2
Resuelve en .
Toca para ver más pasos...
Paso 7.3.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 7.3.2.2
Simplifica .
Toca para ver más pasos...
Paso 7.3.2.2.1
Reescribe como .
Paso 7.3.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 7.3.2.2.3
Más o menos es .
Paso 7.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 7.4.1
Establece igual a .
Paso 7.4.2
Suma a ambos lados de la ecuación.
Paso 7.5
La solución final comprende todos los valores que hacen verdadera.
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.