Álgebra Ejemplos
[-21-2-41214965-2-43-4510]
Paso 1
Establece la fórmula para obtener la ecuación característica p(λ).
p(λ)=determinante(A-λI4)
Paso 2
La matriz de identidades o matriz unidad de tamaño 4 es la matriz cuadrada 4×4 con unos en la diagonal principal y ceros en los otros lugares.
[1000010000100001]
Paso 3
Paso 3.1
Sustituye [-21-2-41214965-2-43-4510] por A.
p(λ)=determinante([-21-2-41214965-2-43-4510]-λI4)
Paso 3.2
Sustituye [1000010000100001] por I4.
p(λ)=determinante([-21-2-41214965-2-43-4510]-λ[1000010000100001])
p(λ)=determinante([-21-2-41214965-2-43-4510]-λ[1000010000100001])
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Multiplica -λ por cada elemento de la matriz.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2
Simplifica cada elemento de la matriz.
Paso 4.1.2.1
Multiplica -1 por 1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.2
Multiplica -λ⋅0.
Paso 4.1.2.2.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.2.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.3
Multiplica -λ⋅0.
Paso 4.1.2.3.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.3.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.4
Multiplica -λ⋅0.
Paso 4.1.2.4.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.4.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.5
Multiplica -λ⋅0.
Paso 4.1.2.5.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.5.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.6
Multiplica -1 por 1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.7
Multiplica -λ⋅0.
Paso 4.1.2.7.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.7.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.8
Multiplica -λ⋅0.
Paso 4.1.2.8.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.8.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.9
Multiplica -λ⋅0.
Paso 4.1.2.9.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.9.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.10
Multiplica -λ⋅0.
Paso 4.1.2.10.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.10.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.11
Multiplica -1 por 1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.12
Multiplica -λ⋅0.
Paso 4.1.2.12.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.12.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.13
Multiplica -λ⋅0.
Paso 4.1.2.13.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.13.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
Paso 4.1.2.14
Multiplica -λ⋅0.
Paso 4.1.2.14.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000λ-λ⋅0-λ⋅1])
Paso 4.1.2.14.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
Paso 4.1.2.15
Multiplica -λ⋅0.
Paso 4.1.2.15.1
Multiplica 0 por -1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000λ-λ⋅1])
Paso 4.1.2.15.2
Multiplica 0 por λ.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ⋅1])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ⋅1])
Paso 4.1.2.16
Multiplica -1 por 1.
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinante([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
Paso 4.2
Suma los elementos correspondientes.
p(λ)=determinante[-2-λ1+0-2+0-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3
Simplify each element.
Paso 4.3.1
Suma 1 y 0.
p(λ)=determinante[-2-λ1-2+0-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.2
Suma -2 y 0.
p(λ)=determinante[-2-λ1-2-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.3
Suma -4 y 0.
p(λ)=determinante[-2-λ1-2-412+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.4
Suma 12 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.5
Suma 4 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ49+06+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.6
Suma 9 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ496+05+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.7
Suma 6 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965+0-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.8
Suma 5 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-4+03+0-4+05+010-λ]
Paso 4.3.9
Suma -4 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43+0-4+05+010-λ]
Paso 4.3.10
Suma 3 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43-4+05+010-λ]
Paso 4.3.11
Suma -4 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43-45+010-λ]
Paso 4.3.12
Suma 5 y 0.
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
p(λ)=determinante[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
Paso 5
Paso 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-λ495-2-λ-4-4510-λ|
Paso 5.1.4
Multiply element a11 by its cofactor.
(-2-λ)|1-λ495-2-λ-4-4510-λ|
Paso 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|12496-2-λ-43510-λ|
Paso 5.1.6
Multiply element a12 by its cofactor.
-1|12496-2-λ-43510-λ|
Paso 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|121-λ965-43-410-λ|
Paso 5.1.8
Multiply element a13 by its cofactor.
-2|121-λ965-43-410-λ|
Paso 5.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|121-λ465-2-λ3-45|
Paso 5.1.10
Multiply element a14 by its cofactor.
4|121-λ465-2-λ3-45|
Paso 5.1.11
Add the terms together.
p(λ)=(-2-λ)|1-λ495-2-λ-4-4510-λ|-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)|1-λ495-2-λ-4-4510-λ|-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2
Evalúa |1-λ495-2-λ-4-4510-λ|.
Paso 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-2-λ-4510-λ|
Paso 5.2.1.4
Multiply element a11 by its cofactor.
(1-λ)|-2-λ-4510-λ|
Paso 5.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|5-4-410-λ|
Paso 5.2.1.6
Multiply element a12 by its cofactor.
-4|5-4-410-λ|
Paso 5.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|5-2-λ-45|
Paso 5.2.1.8
Multiply element a13 by its cofactor.
9|5-2-λ-45|
Paso 5.2.1.9
Add the terms together.
p(λ)=(-2-λ)((1-λ)|-2-λ-4510-λ|-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)|-2-λ-4510-λ|-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2
Evalúa |-2-λ-4510-λ|.
Paso 5.2.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)((-2-λ)(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2
Simplifica el determinante.
Paso 5.2.2.2.1
Simplifica cada término.
Paso 5.2.2.2.1.1
Expande (-2-λ)(10-λ) con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.2.2.2.1.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(-2(10-λ)-λ(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.1.2
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.1.3
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2
Simplifica y combina los términos similares.
Paso 5.2.2.2.1.2.1
Simplifica cada término.
Paso 5.2.2.2.1.2.1.1
Multiplica -2 por 10.
p(λ)=(-2-λ)((1-λ)(-20-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.2
Multiplica -1 por -2.
p(λ)=(-2-λ)((1-λ)(-20+2λ-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.3
Multiplica 10 por -1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ⋅λ-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.5
Multiplica λ por λ sumando los exponentes.
Paso 5.2.2.2.1.2.1.5.1
Mueve λ.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1(λ⋅λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.5.2
Multiplica λ por λ.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.6
Multiplica -1 por -1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.1.7
Multiplica λ2 por 1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.2.2
Resta 10λ de 2λ.
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.1.3
Multiplica -5 por -4.
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2+20)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2+20)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.2
Combina los términos opuestos en -20-8λ+λ2+20.
Paso 5.2.2.2.2.1
Suma -20 y 20.
p(λ)=(-2-λ)((1-λ)(-8λ+λ2+0)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.2.2
Suma -8λ+λ2 y 0.
p(λ)=(-2-λ)((1-λ)(-8λ+λ2)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-8λ+λ2)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.2.2.3
Reordena -8λ y λ2.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3
Evalúa |5-4-410-λ|.
Paso 5.2.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(5(10-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2
Simplifica el determinante.
Paso 5.2.3.2.1
Simplifica cada término.
Paso 5.2.3.2.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(5⋅10+5(-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2.1.2
Multiplica 5 por 10.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50+5(-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2.1.3
Multiplica -1 por 5.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2.1.4
Multiplica -(-4⋅-4).
Paso 5.2.3.2.1.4.1
Multiplica -4 por -4.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-1⋅16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2.1.4.2
Multiplica -1 por 16.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.3.2.2
Resta 16 de 50.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4
Evalúa |5-2-λ-45|.
Paso 5.2.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(5⋅5-(-4(-2-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2
Simplifica el determinante.
Paso 5.2.4.2.1
Simplifica cada término.
Paso 5.2.4.2.1.1
Multiplica 5 por 5.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(-4(-2-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.2
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(-4⋅-2-4(-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.3
Multiplica -4 por -2.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(8-4(-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.4
Multiplica -1 por -4.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(8+4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.5
Aplica la propiedad distributiva.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-1⋅8-(4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.6
Multiplica -1 por 8.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-(4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.1.7
Multiplica 4 por -1.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.2
Resta 8 de 25.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(17-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.4.2.3
Reordena 17 y -4λ.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5
Simplifica el determinante.
Paso 5.2.5.1
Simplifica cada término.
Paso 5.2.5.1.1
Expande (1-λ)(λ2-8λ) con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.2.5.1.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(1(λ2-8λ)-λ(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.1.2
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.1.3
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2
Simplifica y combina los términos similares.
Paso 5.2.5.1.2.1
Simplifica cada término.
Paso 5.2.5.1.2.1.1
Multiplica λ2 por 1.
p(λ)=(-2-λ)(λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.2
Multiplica -8λ por 1.
p(λ)=(-2-λ)(λ2-8λ-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.3
Multiplica λ por λ2 sumando los exponentes.
Paso 5.2.5.1.2.1.3.1
Mueve λ2.
p(λ)=(-2-λ)(λ2-8λ-(λ2λ)-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.3.2
Multiplica λ2 por λ.
Paso 5.2.5.1.2.1.3.2.1
Eleva λ a la potencia de 1.
p(λ)=(-2-λ)(λ2-8λ-(λ2λ1)-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.3.2.2
Usa la regla de la potencia aman=am+n para combinar exponentes.
p(λ)=(-2-λ)(λ2-8λ-λ2+1-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ2+1-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.3.3
Suma 2 y 1.
p(λ)=(-2-λ)(λ2-8λ-λ3-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ⋅λ-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.5
Multiplica λ por λ sumando los exponentes.
Paso 5.2.5.1.2.1.5.1
Mueve λ.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8(λ⋅λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.5.2
Multiplica λ por λ.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.1.6
Multiplica -1 por -8.
p(λ)=(-2-λ)(λ2-8λ-λ3+8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3+8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.2.2
Suma λ2 y 8λ2.
p(λ)=(-2-λ)(9λ2-8λ-λ3-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(9λ2-8λ-λ3-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.3
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(9λ2-8λ-λ3-4(-5λ)-4⋅34+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.4
Multiplica -5 por -4.
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-4⋅34+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.5
Multiplica -4 por 34.
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-136+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.6
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-136+9(-4λ)+9⋅17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.7
Multiplica -4 por 9.
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-136-36λ+9⋅17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.1.8
Multiplica 9 por 17.
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-136-36λ+153)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(9λ2-8λ-λ3+20λ-136-36λ+153)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.2
Suma -8λ y 20λ.
p(λ)=(-2-λ)(9λ2-λ3+12λ-136-36λ+153)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.3
Resta 36λ de 12λ.
p(λ)=(-2-λ)(9λ2-λ3-24λ-136+153)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.4
Suma -136 y 153.
p(λ)=(-2-λ)(9λ2-λ3-24λ+17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.2.5.5
Reordena 9λ2 y -λ3.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3
Evalúa |12496-2-λ-43510-λ|.
Paso 5.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Paso 5.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 5.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.3.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|49510-λ|
Paso 5.3.1.4
Multiply element a21 by its cofactor.
-6|49510-λ|
Paso 5.3.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|129310-λ|
Paso 5.3.1.6
Multiply element a22 by its cofactor.
(-2-λ)|129310-λ|
Paso 5.3.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|12435|
Paso 5.3.1.8
Multiply element a23 by its cofactor.
4|12435|
Paso 5.3.1.9
Add the terms together.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6|49510-λ|+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6|49510-λ|+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2
Evalúa |49510-λ|.
Paso 5.3.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(4(10-λ)-5⋅9)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2.2
Simplifica el determinante.
Paso 5.3.2.2.1
Simplifica cada término.
Paso 5.3.2.2.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(4⋅10+4(-λ)-5⋅9)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2.2.1.2
Multiplica 4 por 10.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(40+4(-λ)-5⋅9)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2.2.1.3
Multiplica -1 por 4.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(40-4λ-5⋅9)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2.2.1.4
Multiplica -5 por 9.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(40-4λ-45)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(40-4λ-45)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.2.2.2
Resta 45 de 40.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)|129310-λ|+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3
Evalúa |129310-λ|.
Paso 5.3.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(12(10-λ)-3⋅9)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3.2
Simplifica el determinante.
Paso 5.3.3.2.1
Simplifica cada término.
Paso 5.3.3.2.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(12⋅10+12(-λ)-3⋅9)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3.2.1.2
Multiplica 12 por 10.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(120+12(-λ)-3⋅9)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3.2.1.3
Multiplica -1 por 12.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(120-12λ-3⋅9)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3.2.1.4
Multiplica -3 por 9.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(120-12λ-27)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(120-12λ-27)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.3.2.2
Resta 27 de 120.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4|12435|)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.4
Evalúa |12435|.
Paso 5.3.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4(12⋅5-3⋅4))-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.4.2
Simplifica el determinante.
Paso 5.3.4.2.1
Simplifica cada término.
Paso 5.3.4.2.1.1
Multiplica 12 por 5.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4(60-3⋅4))-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.4.2.1.2
Multiplica -3 por 4.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4(60-12))-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4(60-12))-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.4.2.2
Resta 12 de 60.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ-5)+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5
Simplifica el determinante.
Paso 5.3.5.1
Simplifica cada término.
Paso 5.3.5.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-6(-4λ)-6⋅-5+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.2
Multiplica -4 por -6.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ-6⋅-5+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.3
Multiplica -6 por -5.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+(-2-λ)(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.4
Expande (-2-λ)(-12λ+93) con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.3.5.1.4.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-2(-12λ+93)-λ(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.4.2
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-2(-12λ)-2⋅93-λ(-12λ+93)+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.4.3
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-2(-12λ)-2⋅93-λ(-12λ)-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-2(-12λ)-2⋅93-λ(-12λ)-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5
Simplifica y combina los términos similares.
Paso 5.3.5.1.5.1
Simplifica cada término.
Paso 5.3.5.1.5.1.1
Multiplica -12 por -2.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-2⋅93-λ(-12λ)-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.2
Multiplica -2 por 93.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186-λ(-12λ)-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186-1⋅-12λ⋅λ-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.4
Multiplica λ por λ sumando los exponentes.
Paso 5.3.5.1.5.1.4.1
Mueve λ.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186-1⋅-12(λ⋅λ)-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.4.2
Multiplica λ por λ.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186-1⋅-12λ2-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186-1⋅-12λ2-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.5
Multiplica -1 por -12.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186+12λ2-λ⋅93+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.1.6
Multiplica 93 por -1.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186+12λ2-93λ+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30+24λ-186+12λ2-93λ+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.5.2
Resta 93λ de 24λ.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-69λ-186+12λ2+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-69λ-186+12λ2+4⋅48)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.1.6
Multiplica 4 por 48.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-69λ-186+12λ2+192)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(24λ+30-69λ-186+12λ2+192)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.2
Resta 69λ de 24λ.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-45λ+30-186+12λ2+192)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.3
Resta 186 de 30.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-45λ-156+12λ2+192)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.4
Suma -156 y 192.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(-45λ+12λ2+36)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.3.5.5
Reordena -45λ y 12λ2.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Paso 5.4
Evalúa |121-λ965-43-410-λ|.
Paso 5.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 5.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 5.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 5.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5-4-410-λ|
Paso 5.4.1.4
Multiply element a11 by its cofactor.
12|5-4-410-λ|
Paso 5.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|6-4310-λ|
Paso 5.4.1.6
Multiply element a12 by its cofactor.
-(1-λ)|6-4310-λ|
Paso 5.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|653-4|
Paso 5.4.1.8
Multiply element a13 by its cofactor.
9|653-4|
Paso 5.4.1.9
Add the terms together.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12|5-4-410-λ|-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12|5-4-410-λ|-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2
Evalúa |5-4-410-λ|.
Paso 5.4.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(5(10-λ)-(-4⋅-4))-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2
Simplifica el determinante.
Paso 5.4.2.2.1
Simplifica cada término.
Paso 5.4.2.2.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(5⋅10+5(-λ)-(-4⋅-4))-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2.1.2
Multiplica 5 por 10.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50+5(-λ)-(-4⋅-4))-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2.1.3
Multiplica -1 por 5.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50-5λ-(-4⋅-4))-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2.1.4
Multiplica -(-4⋅-4).
Paso 5.4.2.2.1.4.1
Multiplica -4 por -4.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50-5λ-1⋅16)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2.1.4.2
Multiplica -1 por 16.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50-5λ-16)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50-5λ-16)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(50-5λ-16)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.2.2.2
Resta 16 de 50.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)|6-4310-λ|+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3
Evalúa |6-4310-λ|.
Paso 5.4.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(6(10-λ)-3⋅-4)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3.2
Simplifica el determinante.
Paso 5.4.3.2.1
Simplifica cada término.
Paso 5.4.3.2.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(6⋅10+6(-λ)-3⋅-4)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3.2.1.2
Multiplica 6 por 10.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(60+6(-λ)-3⋅-4)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3.2.1.3
Multiplica -1 por 6.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(60-6λ-3⋅-4)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3.2.1.4
Multiplica -3 por -4.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(60-6λ+12)+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(60-6λ+12)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.3.2.2
Suma 60 y 12.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9|653-4|)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9|653-4|)+4|121-λ465-2-λ3-45|
Paso 5.4.4
Evalúa |653-4|.
Paso 5.4.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9(6⋅-4-3⋅5))+4|121-λ465-2-λ3-45|
Paso 5.4.4.2
Simplifica el determinante.
Paso 5.4.4.2.1
Simplifica cada término.
Paso 5.4.4.2.1.1
Multiplica 6 por -4.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9(-24-3⋅5))+4|121-λ465-2-λ3-45|
Paso 5.4.4.2.1.2
Multiplica -3 por 5.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9(-24-15))+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9(-24-15))+4|121-λ465-2-λ3-45|
Paso 5.4.4.2.2
Resta 15 de -24.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9⋅-39)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9⋅-39)+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ+34)-(1-λ)(-6λ+72)+9⋅-39)+4|121-λ465-2-λ3-45|
Paso 5.4.5
Simplifica el determinante.
Paso 5.4.5.1
Simplifica cada término.
Paso 5.4.5.1.1
Aplica la propiedad distributiva.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(12(-5λ)+12⋅34-(1-λ)(-6λ+72)+9⋅-39)+4|121-λ465-2-λ3-45|
Paso 5.4.5.1.2
Multiplica -5 por 12.
p(λ)=(-2-λ)(-λ3+9λ2-24λ+17)-1(12λ2-45λ+36)-2(-60λ+12⋅34-(1-λ)(-6λ+72)+9⋅-39)+4|121-λ465-2-λ3-45|
Paso 5.4.5.1.3
Multiplica por .
Paso 5.4.5.1.4
Aplica la propiedad distributiva.
Paso 5.4.5.1.5
Multiplica por .
Paso 5.4.5.1.6
Multiplica .
Paso 5.4.5.1.6.1
Multiplica por .
Paso 5.4.5.1.6.2
Multiplica por .
Paso 5.4.5.1.7
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.4.5.1.7.1
Aplica la propiedad distributiva.
Paso 5.4.5.1.7.2
Aplica la propiedad distributiva.
Paso 5.4.5.1.7.3
Aplica la propiedad distributiva.
Paso 5.4.5.1.8
Simplifica y combina los términos similares.
Paso 5.4.5.1.8.1
Simplifica cada término.
Paso 5.4.5.1.8.1.1
Multiplica por .
Paso 5.4.5.1.8.1.2
Multiplica por .
Paso 5.4.5.1.8.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.4.5.1.8.1.4
Multiplica por sumando los exponentes.
Paso 5.4.5.1.8.1.4.1
Mueve .
Paso 5.4.5.1.8.1.4.2
Multiplica por .
Paso 5.4.5.1.8.1.5
Mueve a la izquierda de .
Paso 5.4.5.1.8.2
Suma y .
Paso 5.4.5.1.9
Multiplica por .
Paso 5.4.5.2
Suma y .
Paso 5.4.5.3
Resta de .
Paso 5.4.5.4
Resta de .
Paso 5.4.5.5
Reordena y .
Paso 5.5
Evalúa .
Paso 5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Paso 5.5.1.1
Consider the corresponding sign chart.
Paso 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Paso 5.5.1.3
The minor for is the determinant with row and column deleted.
Paso 5.5.1.4
Multiply element by its cofactor.
Paso 5.5.1.5
The minor for is the determinant with row and column deleted.
Paso 5.5.1.6
Multiply element by its cofactor.
Paso 5.5.1.7
The minor for is the determinant with row and column deleted.
Paso 5.5.1.8
Multiply element by its cofactor.
Paso 5.5.1.9
Add the terms together.
Paso 5.5.2
Evalúa .
Paso 5.5.2.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.5.2.2
Simplifica el determinante.
Paso 5.5.2.2.1
Simplifica cada término.
Paso 5.5.2.2.1.1
Multiplica por .
Paso 5.5.2.2.1.2
Aplica la propiedad distributiva.
Paso 5.5.2.2.1.3
Multiplica por .
Paso 5.5.2.2.1.4
Multiplica por .
Paso 5.5.2.2.1.5
Aplica la propiedad distributiva.
Paso 5.5.2.2.1.6
Multiplica por .
Paso 5.5.2.2.1.7
Multiplica por .
Paso 5.5.2.2.2
Resta de .
Paso 5.5.2.2.3
Reordena y .
Paso 5.5.3
Evalúa .
Paso 5.5.3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.5.3.2
Simplifica el determinante.
Paso 5.5.3.2.1
Simplifica cada término.
Paso 5.5.3.2.1.1
Multiplica por .
Paso 5.5.3.2.1.2
Aplica la propiedad distributiva.
Paso 5.5.3.2.1.3
Multiplica por .
Paso 5.5.3.2.1.4
Multiplica por .
Paso 5.5.3.2.2
Suma y .
Paso 5.5.3.2.3
Reordena y .
Paso 5.5.4
Evalúa .
Paso 5.5.4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.5.4.2
Simplifica el determinante.
Paso 5.5.4.2.1
Simplifica cada término.
Paso 5.5.4.2.1.1
Multiplica por .
Paso 5.5.4.2.1.2
Multiplica por .
Paso 5.5.4.2.2
Resta de .
Paso 5.5.5
Simplifica el determinante.
Paso 5.5.5.1
Simplifica cada término.
Paso 5.5.5.1.1
Aplica la propiedad distributiva.
Paso 5.5.5.1.2
Multiplica por .
Paso 5.5.5.1.3
Multiplica por .
Paso 5.5.5.1.4
Aplica la propiedad distributiva.
Paso 5.5.5.1.5
Multiplica por .
Paso 5.5.5.1.6
Multiplica .
Paso 5.5.5.1.6.1
Multiplica por .
Paso 5.5.5.1.6.2
Multiplica por .
Paso 5.5.5.1.7
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.5.5.1.7.1
Aplica la propiedad distributiva.
Paso 5.5.5.1.7.2
Aplica la propiedad distributiva.
Paso 5.5.5.1.7.3
Aplica la propiedad distributiva.
Paso 5.5.5.1.8
Simplifica y combina los términos similares.
Paso 5.5.5.1.8.1
Simplifica cada término.
Paso 5.5.5.1.8.1.1
Multiplica por .
Paso 5.5.5.1.8.1.2
Multiplica por .
Paso 5.5.5.1.8.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.5.5.1.8.1.4
Multiplica por sumando los exponentes.
Paso 5.5.5.1.8.1.4.1
Mueve .
Paso 5.5.5.1.8.1.4.2
Multiplica por .
Paso 5.5.5.1.8.1.5
Mueve a la izquierda de .
Paso 5.5.5.1.8.2
Suma y .
Paso 5.5.5.1.9
Multiplica por .
Paso 5.5.5.2
Suma y .
Paso 5.5.5.3
Resta de .
Paso 5.5.5.4
Resta de .
Paso 5.5.5.5
Reordena y .
Paso 5.6
Simplifica el determinante.
Paso 5.6.1
Simplifica cada término.
Paso 5.6.1.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 5.6.1.2
Simplifica cada término.
Paso 5.6.1.2.1
Multiplica por .
Paso 5.6.1.2.2
Multiplica por .
Paso 5.6.1.2.3
Multiplica por .
Paso 5.6.1.2.4
Multiplica por .
Paso 5.6.1.2.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.6.1.2.6
Multiplica por sumando los exponentes.
Paso 5.6.1.2.6.1
Mueve .
Paso 5.6.1.2.6.2
Multiplica por .
Paso 5.6.1.2.6.2.1
Eleva a la potencia de .
Paso 5.6.1.2.6.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.6.1.2.6.3
Suma y .
Paso 5.6.1.2.7
Multiplica por .
Paso 5.6.1.2.8
Multiplica por .
Paso 5.6.1.2.9
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.6.1.2.10
Multiplica por sumando los exponentes.
Paso 5.6.1.2.10.1
Mueve .
Paso 5.6.1.2.10.2
Multiplica por .
Paso 5.6.1.2.10.2.1
Eleva a la potencia de .
Paso 5.6.1.2.10.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.6.1.2.10.3
Suma y .
Paso 5.6.1.2.11
Multiplica por .
Paso 5.6.1.2.12
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.6.1.2.13
Multiplica por sumando los exponentes.
Paso 5.6.1.2.13.1
Mueve .
Paso 5.6.1.2.13.2
Multiplica por .
Paso 5.6.1.2.14
Multiplica por .
Paso 5.6.1.2.15
Multiplica por .
Paso 5.6.1.3
Resta de .
Paso 5.6.1.4
Suma y .
Paso 5.6.1.5
Resta de .
Paso 5.6.1.6
Aplica la propiedad distributiva.
Paso 5.6.1.7
Simplifica.
Paso 5.6.1.7.1
Multiplica por .
Paso 5.6.1.7.2
Multiplica por .
Paso 5.6.1.7.3
Multiplica por .
Paso 5.6.1.8
Aplica la propiedad distributiva.
Paso 5.6.1.9
Simplifica.
Paso 5.6.1.9.1
Multiplica por .
Paso 5.6.1.9.2
Multiplica por .
Paso 5.6.1.9.3
Multiplica por .
Paso 5.6.1.10
Aplica la propiedad distributiva.
Paso 5.6.1.11
Simplifica.
Paso 5.6.1.11.1
Multiplica por .
Paso 5.6.1.11.2
Multiplica por .
Paso 5.6.1.11.3
Multiplica por .
Paso 5.6.2
Combina los términos opuestos en .
Paso 5.6.2.1
Suma y .
Paso 5.6.2.2
Suma y .
Paso 5.6.3
Suma y .
Paso 5.6.4
Suma y .
Paso 5.6.5
Resta de .
Paso 5.6.6
Resta de .
Paso 5.6.7
Resta de .
Paso 5.6.8
Suma y .
Paso 5.6.9
Suma y .
Paso 5.6.10
Mueve .
Paso 5.6.11
Mueve .
Paso 5.6.12
Reordena y .