Álgebra Ejemplos

Paso 1
Establece la fórmula para obtener la ecuación característica .
Paso 2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 3
Sustituye los valores conocidos en .
Toca para ver más pasos...
Paso 3.1
Sustituye por .
Paso 3.2
Sustituye por .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Multiplica por cada elemento de la matriz.
Paso 4.1.2
Simplifica cada elemento de la matriz.
Toca para ver más pasos...
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.2.1
Multiplica por .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.3
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.4.1
Multiplica por .
Paso 4.1.2.4.2
Multiplica por .
Paso 4.1.2.5
Multiplica por .
Paso 4.1.2.6
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.6.1
Multiplica por .
Paso 4.1.2.6.2
Multiplica por .
Paso 4.1.2.7
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.7.1
Multiplica por .
Paso 4.1.2.7.2
Multiplica por .
Paso 4.1.2.8
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.8.1
Multiplica por .
Paso 4.1.2.8.2
Multiplica por .
Paso 4.1.2.9
Multiplica por .
Paso 4.2
Suma los elementos correspondientes.
Paso 4.3
Simplifica cada elemento.
Toca para ver más pasos...
Paso 4.3.1
Suma y .
Paso 4.3.2
Suma y .
Paso 4.3.3
Suma y .
Paso 4.3.4
Suma y .
Paso 4.3.5
Suma y .
Paso 4.3.6
Suma y .
Paso 4.3.7
Resta de .
Paso 5
Obtén el determinante.
Toca para ver más pasos...
Paso 5.1
Elige la fila o columna con más elementos . Si no hay elementos , elige cualquier fila o columna. Multiplica cada elemento en la fila por su cofactor y suma.
Toca para ver más pasos...
Paso 5.1.1
Considera el cuadro de signos correspondiente.
Paso 5.1.2
El cofactor es el elemento menor con el signo cambiado si los índices coinciden con una posición en el cuadro de signos.
Paso 5.1.3
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.4
Multiplica el elemento por su cofactor.
Paso 5.1.5
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.6
Multiplica el elemento por su cofactor.
Paso 5.1.7
El elemento menor de es la determinante con la fila y la columna borradas.
Paso 5.1.8
Multiplica el elemento por su cofactor.
Paso 5.1.9
Suma los términos juntos.
Paso 5.2
Evalúa .
Toca para ver más pasos...
Paso 5.2.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.2.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.2.1.1
Aplica la propiedad distributiva.
Paso 5.2.2.1.2
Multiplica por .
Paso 5.2.2.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.2.1.4
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.2.1.4.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.2.2.1.4.1.1
Mueve .
Paso 5.2.2.1.4.1.2
Multiplica por .
Paso 5.2.2.1.4.2
Multiplica por .
Paso 5.2.2.1.4.3
Multiplica por .
Paso 5.2.2.1.5
Multiplica por .
Paso 5.2.2.2
Reordena y .
Paso 5.3
Evalúa .
Toca para ver más pasos...
Paso 5.3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.3.2
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.2.1
Multiplica por .
Paso 5.3.2.2
Multiplica por .
Paso 5.4
Evalúa .
Toca para ver más pasos...
Paso 5.4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.2.1.1
Multiplica por .
Paso 5.4.2.1.2
Aplica la propiedad distributiva.
Paso 5.4.2.1.3
Multiplica por .
Paso 5.4.2.1.4
Multiplica por .
Paso 5.4.2.2
Resta de .
Paso 5.4.2.3
Reordena y .
Paso 5.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.5.1.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 5.5.1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 5.5.1.2.1
Multiplica por .
Paso 5.5.1.2.2
Multiplica por .
Paso 5.5.1.2.3
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.5.1.2.3.1
Mueve .
Paso 5.5.1.2.3.2
Multiplica por .
Toca para ver más pasos...
Paso 5.5.1.2.3.2.1
Eleva a la potencia de .
Paso 5.5.1.2.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.5.1.2.3.3
Suma y .
Paso 5.5.1.2.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.5.1.2.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.5.1.2.5.1
Mueve .
Paso 5.5.1.2.5.2
Multiplica por .
Paso 5.5.1.2.6
Multiplica por .
Paso 5.5.1.2.7
Multiplica por .
Paso 5.5.1.3
Suma y .
Paso 5.5.1.4
Suma y .
Paso 5.5.1.5
Aplica la propiedad distributiva.
Paso 5.5.1.6
Multiplica por .
Paso 5.5.1.7
Multiplica por .
Paso 5.5.1.8
Aplica la propiedad distributiva.
Paso 5.5.1.9
Multiplica por .
Paso 5.5.1.10
Multiplica por .
Paso 5.5.2
Suma y .
Paso 5.5.3
Suma y .
Paso 5.5.4
Suma y .
Paso 5.5.5
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.5.5.1
Resta de .
Paso 5.5.5.2
Suma y .
Paso 5.5.6
Mueve .
Paso 5.5.7
Reordena y .
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.