Ejemplos

Demostrar que la raíz está en el intervalo
,
Paso 1
Según el teorema de valor medio, si es una función continua con valor real en el intervalo y es un número entre y , entonces hay una contenida en el intervalo de tal modo que .
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Resta de .
Paso 4
Resta de .
Paso 5
Como está en el intervalo , resuelve la ecuación en en la raíz mediante el establecimiento de a en .
Toca para ver más pasos...
Paso 5.1
Reescribe la ecuación como .
Paso 5.2
Suma a ambos lados de la ecuación.
Paso 6
Según el teorema de valor medio, hay una raíz en el intervalo porque es una función continua en .
Las raíces en el intervalo se ubican en .
Paso 7
Ingresa TU problema
Mathway requiere JavaScript y un navegador moderno.