Gib eine Aufgabe ein ...
Trigonometrie Beispiele
,
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.2
Mutltipliziere mit .
Schritt 2.3.3
Vereinige und vereinfache den Nenner.
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Potenziere mit .
Schritt 2.3.3.3
Potenziere mit .
Schritt 2.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Schreibe als um.
Schritt 2.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 2.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.3.6.3
Kombiniere und .
Schritt 2.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.6.4.2
Forme den Ausdruck um.
Schritt 2.3.3.6.5
Berechne den Exponenten.
Schritt 3
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 4
Schritt 4.1
Der genau Wert von ist .
Schritt 5
Die Sekans-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadraten zu ermitteln.
Schritt 6
Schritt 6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2
Kombiniere Brüche.
Schritt 6.2.1
Kombiniere und .
Schritt 6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3
Vereinfache den Zähler.
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Subtrahiere von .
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 9
Schritt 9.1
Setze für ein und vereinfache, um zu sehen, ob die Lösung in enthalten ist.
Schritt 9.1.1
Setze für ein.
Schritt 9.1.2
Vereinfache.
Schritt 9.1.2.1
Multipliziere .
Schritt 9.1.2.1.1
Mutltipliziere mit .
Schritt 9.1.2.1.2
Mutltipliziere mit .
Schritt 9.1.2.2
Addiere und .
Schritt 9.1.3
Das Intervall enthält .
Schritt 9.2
Setze für ein und vereinfache, um zu sehen, ob die Lösung in enthalten ist.
Schritt 9.2.1
Setze für ein.
Schritt 9.2.2
Vereinfache.
Schritt 9.2.2.1
Multipliziere .
Schritt 9.2.2.1.1
Mutltipliziere mit .
Schritt 9.2.2.1.2
Mutltipliziere mit .
Schritt 9.2.2.2
Addiere und .
Schritt 9.2.3
Das Intervall enthält .