Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Wende die quadratische Ergänzung auf an.
Schritt 1.2.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.2.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.2.3
Ermittle den Wert von mithilfe der Formel .
Schritt 1.2.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.3.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.3.2.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2.3
Forme den Ausdruck um.
Schritt 1.2.3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.3.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.3.2.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.2.2.3
Forme den Ausdruck um.
Schritt 1.2.3.2.2.2.4
Dividiere durch .
Schritt 1.2.4
Ermittle den Wert von mithilfe der Formel .
Schritt 1.2.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Schritt 1.2.4.2.1.1
Potenziere mit .
Schritt 1.2.4.2.1.2
Mutltipliziere mit .
Schritt 1.2.4.2.1.3
Dividiere durch .
Schritt 1.2.4.2.1.4
Mutltipliziere mit .
Schritt 1.2.4.2.2
Subtrahiere von .
Schritt 1.2.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.3
Setze für ein in der Gleichung .
Schritt 1.4
Bringe auf die rechte Seite der Gleichung durch Addieren von auf beiden Seiten.
Schritt 1.5
Wende die quadratische Ergänzung auf an.
Schritt 1.5.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.5.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.5.3
Ermittle den Wert von mithilfe der Formel .
Schritt 1.5.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.5.3.2
Vereinfache die rechte Seite.
Schritt 1.5.3.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.5.3.2.1.1
Faktorisiere aus heraus.
Schritt 1.5.3.2.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 1.5.3.2.2
Schreibe als um.
Schritt 1.5.3.2.3
Mutltipliziere mit .
Schritt 1.5.4
Ermittle den Wert von mithilfe der Formel .
Schritt 1.5.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.5.4.2
Vereinfache die rechte Seite.
Schritt 1.5.4.2.1
Vereinfache jeden Term.
Schritt 1.5.4.2.1.1
Potenziere mit .
Schritt 1.5.4.2.1.2
Mutltipliziere mit .
Schritt 1.5.4.2.1.3
Dividiere durch .
Schritt 1.5.4.2.1.4
Mutltipliziere mit .
Schritt 1.5.4.2.2
Addiere und .
Schritt 1.5.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.6
Setze für ein in der Gleichung .
Schritt 1.7
Bringe auf die rechte Seite der Gleichung durch Addieren von auf beiden Seiten.
Schritt 1.8
Vereinfache .
Schritt 1.8.1
Addiere und .
Schritt 1.8.2
Subtrahiere von .
Schritt 1.9
Teile jeden Term durch , um die rechte Seite gleich Eins zu machen.
Schritt 1.10
Vereinfache jeden Term in der Gleichung, um die rechte Seite gleich zu setzen. Die Standardform einer Ellipse oder Hyperbel erfordert es, dass die rechte Seite der Gleichung gleich ist.
Schritt 2
Dies ist die Form einer Hyperbel. Wende diese Form an, um die Werte zu ermitteln, die benutzt werden, um die Scheitelpunkte und Asymptoten einer Hyperbel zu bestimmen.
Schritt 3
Gleiche die Werte in dieser Hyperbel mit denen der Standardform ab. Die Variable stellt das x-Offset vom Ursprung dar, das y-Offset vom Ursprung, .
Schritt 4
Schritt 4.1
Ermittle den Abstand vom Mittelpunkt zu einem Brennpunkt der Hyperbel durch Anwendung der folgenden Formel.
Schritt 4.2
Ersetze die Werte von und in der Formel.
Schritt 4.3
Vereinfache.
Schritt 4.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2
Potenziere mit .
Schritt 4.3.3
Addiere und .
Schritt 5
Schritt 5.1
Der erste Brennpunkt einer Hyperbel kann durch Addieren von zu gefunden werden.
Schritt 5.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 5.3
Der zweite Brennpunkt einer Hyperbel kann durch Substrahieren von von ermittelt werden.
Schritt 5.4
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 5.5
Die Brennpunkt einer Hyperbel folgen der Form . Hyperbeln haben zwei Brennpunkte.
Schritt 6