Trigonometrie Beispiele

Ermittle den Maximum-/Minimumwert f(x)=-4sin(x-0.5)+11
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Die Ableitung von nach ist .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Addiere und .
Schritt 1.2.7
Mutltipliziere mit .
Schritt 1.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.2
Addiere und .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Addiere und .
Schritt 2.3.5.2
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Dividiere durch .
Schritt 5
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 6
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der genau Wert von ist .
Schritt 7
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Addiere zu beiden Seiten der Gleichung.
Schritt 7.2
Addiere und .
Schritt 8
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 9
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.1.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Kombiniere und .
Schritt 9.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.1.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.3.1
Mutltipliziere mit .
Schritt 9.1.3.2
Subtrahiere von .
Schritt 9.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.2.2
Addiere und .
Schritt 10
Die Lösung der Gleichung .
Schritt 11
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 12
Subtrahiere von .
Schritt 13
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 14
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 14.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Subtrahiere von .
Schritt 14.2.2
Die endgültige Lösung ist .
Schritt 15
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 16
Subtrahiere von .
Schritt 17
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 18
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 18.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 18.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 18.2.1
Subtrahiere von .
Schritt 18.2.2
Die endgültige Lösung ist .
Schritt 19
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 20