Trigonometrie Beispiele

Löse das Dreieck tri{15}{}{}{}{20}{90}
Schritt 1
Berechne die übrig gebliebene Seite unter Anwendung des Satzes von Pythagoras.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende den Satz des Pythagoras an, um die unbekannte Seite zu bestimmen. In jedem rechtwinkligen Dreieck ist die Fläche des Quadrates, dessen Seite die Hypotenuse (die Seite eines rechtwinkligen Dreiecks gegenüber dem rechten Winkel) ist, gleich der Summe der Flächen der Quadrate, deren Seiten die beiden Schenkel sind (die zwei Seiten, die nicht die Hypotenuse sind).
Schritt 1.2
Löse die Gleichung nach auf.
Schritt 1.3
Setze die tatsächlichen Werte in die Gleichung ein.
Schritt 1.4
Potenziere mit .
Schritt 1.5
Potenziere mit .
Schritt 1.6
Addiere und .
Schritt 1.7
Schreibe als um.
Schritt 1.8
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der Winkel kann durch Anwendung der inversen Sinusfunktion ermittelt werden.
Schritt 2.2
Setze die Werte der Gegenkathete des Winkels und der Hypotenuse des Dreiecks ein.
Schritt 2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Faktorisiere aus heraus.
Schritt 2.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.3
Forme den Ausdruck um.
Schritt 2.4
Berechne .
Schritt 3
Bestimme den verbleibenden Winkel des Dreiecks.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Die Summe aller Winkel in einem Dreieck ist Grad.
Schritt 3.2
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Addiere und .
Schritt 3.2.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2.2
Subtrahiere von .
Schritt 4
Dies sind die Ergebnisse für alle Winkel und Seiten des gegebenen Dreiecks.