Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Schreibe als um.
Schritt 2.2
Schreibe als um.
Schritt 2.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.2.3
Vereinfache .
Schritt 4.2.3.1
Schreibe als um.
Schritt 4.2.3.2
Schreibe als um.
Schritt 4.2.3.3
Schreibe als um.
Schritt 4.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Schritt 5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.