Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2.1.2
Dividiere durch .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Schritt 1.2.2.3.1
Dividiere durch .
Schritt 1.2.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 1.2.4
Vereinfache die rechte Seite.
Schritt 1.2.4.1
Der genau Wert von ist .
Schritt 1.2.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 1.2.6
Subtrahiere von .
Schritt 1.2.7
Ermittele die Periode von .
Schritt 1.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.7.4
Dividiere durch .
Schritt 1.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 1.2.9
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Vereinfache .
Schritt 2.2.2.1
Der genau Wert von ist .
Schritt 2.2.2.2
Mutltipliziere mit .
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der y-Achse:
Schritt 4