Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4
Vereinfache .
Schritt 2.4.1
Schreibe als um.
Schritt 2.4.2
Vereinfache den Nenner.
Schritt 2.4.2.1
Schreibe als um.
Schritt 2.4.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 2.7
Löse in nach auf.
Schritt 2.7.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.7.2
Vereinfache die rechte Seite.
Schritt 2.7.2.1
Der genau Wert von ist .
Schritt 2.7.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 2.7.4
Vereinfache .
Schritt 2.7.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7.4.2
Kombiniere Brüche.
Schritt 2.7.4.2.1
Kombiniere und .
Schritt 2.7.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.7.4.3
Vereinfache den Zähler.
Schritt 2.7.4.3.1
Mutltipliziere mit .
Schritt 2.7.4.3.2
Subtrahiere von .
Schritt 2.7.5
Ermittele die Periode von .
Schritt 2.7.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.5.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.7.5.4
Dividiere durch .
Schritt 2.7.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 2.8
Löse in nach auf.
Schritt 2.8.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.8.2
Vereinfache die rechte Seite.
Schritt 2.8.2.1
Der genau Wert von ist .
Schritt 2.8.3
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 2.8.4
Vereinfache .
Schritt 2.8.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.8.4.2
Kombiniere Brüche.
Schritt 2.8.4.2.1
Kombiniere und .
Schritt 2.8.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.8.4.3
Vereinfache den Zähler.
Schritt 2.8.4.3.1
Mutltipliziere mit .
Schritt 2.8.4.3.2
Subtrahiere von .
Schritt 2.8.5
Ermittele die Periode von .
Schritt 2.8.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.8.5.2
Ersetze durch in der Formel für die Periode.
Schritt 2.8.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.8.5.4
Dividiere durch .
Schritt 2.8.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 2.9
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 2.10
Fasse die Lösungen zusammen.
Schritt 2.10.1
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 2.10.2
Führe und zu zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 3