Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Kombiniere und .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Kombiniere und .
Schritt 2.3.2
Bringe auf die linke Seite von .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Setze den Zähler gleich Null.
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.1.1
Teile jeden Ausdruck in durch .
Schritt 5.1.2
Vereinfache die linke Seite.
Schritt 5.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.1.2
Dividiere durch .
Schritt 5.1.3
Vereinfache die rechte Seite.
Schritt 5.1.3.1
Dividiere durch .
Schritt 5.2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Der genau Wert von ist .
Schritt 5.4
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5.5
Subtrahiere von .
Schritt 5.6
Die Lösung der Gleichung .
Schritt 6
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 7
Schritt 7.1
Der genau Wert von ist .
Schritt 7.2
Mutltipliziere mit .
Schritt 8
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 9
Schritt 9.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 9.2
Vereinfache das Ergebnis.
Schritt 9.2.1
Der genau Wert von ist .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 9.2.3
Die endgültige Lösung ist .
Schritt 10
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 11
Schritt 11.1
Vereinfache den Zähler.
Schritt 11.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 11.1.2
Der genau Wert von ist .
Schritt 11.1.3
Mutltipliziere mit .
Schritt 11.2
Vereinfache den Ausdruck.
Schritt 11.2.1
Mutltipliziere mit .
Schritt 11.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.3
Multipliziere .
Schritt 11.3.1
Mutltipliziere mit .
Schritt 11.3.2
Mutltipliziere mit .
Schritt 12
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 13
Schritt 13.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 13.2
Vereinfache das Ergebnis.
Schritt 13.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 13.2.2
Der genau Wert von ist .
Schritt 13.2.3
Mutltipliziere mit .
Schritt 13.2.4
Multipliziere .
Schritt 13.2.4.1
Kombiniere und .
Schritt 13.2.4.2
Mutltipliziere mit .
Schritt 13.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 13.2.6
Die endgültige Lösung ist .
Schritt 14
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 15