Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Die Ableitung von nach ist .
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 5
Schritt 5.1
Der genau Wert von ist .
Schritt 6
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 7
Schritt 7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2
Kombiniere Brüche.
Schritt 7.2.1
Kombiniere und .
Schritt 7.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.3
Vereinfache den Zähler.
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Subtrahiere von .
Schritt 8
Die Lösung der Gleichung .
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Der genau Wert von ist .
Schritt 10.2
Mutltipliziere mit .
Schritt 11
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Der genau Wert von ist .
Schritt 12.2.2
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Schritt 14.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 14.2
Der genau Wert von ist .
Schritt 14.3
Multipliziere .
Schritt 14.3.1
Mutltipliziere mit .
Schritt 14.3.2
Mutltipliziere mit .
Schritt 15
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 16
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Schritt 16.2.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 16.2.2
Der genau Wert von ist .
Schritt 16.2.3
Mutltipliziere mit .
Schritt 16.2.4
Die endgültige Lösung ist .
Schritt 17
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 18