Gib eine Aufgabe ein ...
Trigonometrie Beispiele
,
Schritt 1
Ersetze durch .
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Schritt 2.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.2
Addiere und .
Schritt 2.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Vereinfache den Zähler.
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Multipliziere .
Schritt 2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.1.3
Subtrahiere von .
Schritt 2.5.1.4
Schreibe als um.
Schritt 2.5.1.5
Schreibe als um.
Schritt 2.5.1.6
Schreibe als um.
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.6.1
Vereinfache den Zähler.
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Multipliziere .
Schritt 2.6.1.2.1
Mutltipliziere mit .
Schritt 2.6.1.2.2
Mutltipliziere mit .
Schritt 2.6.1.3
Subtrahiere von .
Schritt 2.6.1.4
Schreibe als um.
Schritt 2.6.1.5
Schreibe als um.
Schritt 2.6.1.6
Schreibe als um.
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Ändere das zu .
Schritt 2.6.4
Schreibe als um.
Schritt 2.6.5
Faktorisiere aus heraus.
Schritt 2.6.6
Faktorisiere aus heraus.
Schritt 2.6.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.7.1
Vereinfache den Zähler.
Schritt 2.7.1.1
Potenziere mit .
Schritt 2.7.1.2
Multipliziere .
Schritt 2.7.1.2.1
Mutltipliziere mit .
Schritt 2.7.1.2.2
Mutltipliziere mit .
Schritt 2.7.1.3
Subtrahiere von .
Schritt 2.7.1.4
Schreibe als um.
Schritt 2.7.1.5
Schreibe als um.
Schritt 2.7.1.6
Schreibe als um.
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.7.3
Ändere das zu .
Schritt 2.7.4
Schreibe als um.
Schritt 2.7.5
Faktorisiere aus heraus.
Schritt 2.7.6
Faktorisiere aus heraus.
Schritt 2.7.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.8
Die endgültige Lösung ist die Kombination beider Lösungen.