Trigonometrie Beispiele

Stelle graphisch dar h(x)=0.5sin(0.25x+0.75pi)-5
Schritt 1
Wende die Form an, um die Variablen, die zur Ermittlung von Amplitude, Periode, Phasenverschiebung und vertikaler Verschiebung genutzt werden, zu bestimmen.
Schritt 2
Bestimme die Amplitude .
Amplitude:
Schritt 3
Ermittle die Periode mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.1.2
Ersetze durch in der Formel für die Periode.
Schritt 3.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.1.4
Ersetze durch eine Näherung.
Schritt 3.1.5
Mutltipliziere mit .
Schritt 3.1.6
Dividiere durch .
Schritt 3.2
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.4
Ersetze durch eine Näherung.
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.2.6
Dividiere durch .
Schritt 3.3
Die Periode der Summe/Differenz trigonometrischer Funktionen ist das Maximum der individuellen Perioden.
Schritt 4
Ermittle die Phasenverschiebung mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Die Phasenverschiebung der Funktion kann mithilfe von berechnet werden.
Phasenverschiebung:
Schritt 4.2
Ersetze die Werte von und in der Gleichung für die Phasenverschiebung.
Phasenverschiebung:
Schritt 4.3
Dividiere durch .
Phasenverschiebung:
Phasenverschiebung:
Schritt 5
Liste die Eigenschaften der trigonometrischen Funktion auf.
Amplitude:
Periode:
Phasenverschiebung: ( nach links)
Vertikale Verschiebung:
Schritt 6
Wähle einige Punkte aus, um den Graphen zu zeichnen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1.1
Mutltipliziere mit .
Schritt 6.1.2.1.2
Addiere und .
Schritt 6.1.2.1.3
Der genau Wert von ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1.3.1
Schreibe um als einen Winkel, für den die Werte der sechs trigonometrischen Funktionen bekannt sind, dividiert durch .
Schritt 6.1.2.1.3.2
Wende die Halbwinkelformel für den Sinus an
Schritt 6.1.2.1.3.3
Wechsele das zu , da der Sinus im ersten Quadranten positiv ist.
Schritt 6.1.2.1.3.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1.3.4.1
Der genau Wert von ist .
Schritt 6.1.2.1.3.4.2
Mutltipliziere mit .
Schritt 6.1.2.1.3.4.3
Subtrahiere von .
Schritt 6.1.2.1.3.4.4
Dividiere durch .
Schritt 6.1.2.1.3.4.5
Schreibe als um.
Schritt 6.1.2.1.3.4.6
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.1.2.1.4
Mutltipliziere mit .
Schritt 6.1.2.2
Subtrahiere von .
Schritt 6.1.2.3
Die endgültige Lösung ist .
Schritt 6.2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Mutltipliziere mit .
Schritt 6.2.2.1.2
Addiere und .
Schritt 6.2.2.1.3
Mutltipliziere mit .
Schritt 6.2.2.2
Subtrahiere von .
Schritt 6.2.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Mutltipliziere mit .
Schritt 6.3.2.1.2
Addiere und .
Schritt 6.3.2.1.3
Mutltipliziere mit .
Schritt 6.3.2.2
Subtrahiere von .
Schritt 6.3.2.3
Die endgültige Lösung ist .
Schritt 6.4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Mutltipliziere mit .
Schritt 6.4.2.1.2
Addiere und .
Schritt 6.4.2.1.3
Mutltipliziere mit .
Schritt 6.4.2.2
Subtrahiere von .
Schritt 6.4.2.3
Die endgültige Lösung ist .
Schritt 6.5
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1.1
Mutltipliziere mit .
Schritt 6.5.2.1.2
Addiere und .
Schritt 6.5.2.1.3
Mutltipliziere mit .
Schritt 6.5.2.2
Subtrahiere von .
Schritt 6.5.2.3
Die endgültige Lösung ist .
Schritt 6.6
Erfasse die Punkte in einer Tabelle.
Schritt 7
Die trigonometrische Funktion kann mithilfe der Amplitude, Periode, Phasenverschiebung, vertikalen Verschiebung und den Punkten graphisch dargestellt werden.
Amplitude:
Periode:
Phasenverschiebung: ( nach links)
Vertikale Verschiebung:
Schritt 8