Trigonometrie Beispiele

Stelle graphisch dar h(x)=3|cos(x)|
Schritt 1
Bestimme den Scheitelpunkt des Absolutwerts. In diesem Fall ist der Scheitelpunkt für gleich .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 1.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Der genau Wert von ist .
Schritt 1.2.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 1.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Kombiniere und .
Schritt 1.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.1
Mutltipliziere mit .
Schritt 1.2.4.3.2
Subtrahiere von .
Schritt 1.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.5.4
Dividiere durch .
Schritt 1.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 1.2.7
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4