Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Vereinfache jeden Term.
Schritt 1.2.1
Kombiniere und .
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2
Faktorisiere aus heraus.
Schritt 1.2.3.3
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.4
Forme den Ausdruck um.
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Mutltipliziere mit .
Schritt 1.3
Bewege .
Schritt 1.4
Stelle und um.
Schritt 2
Dies ist die Form einer Hyperbel. Wende diese Form an, um die Werte zu ermitteln, die benutzt werden, um die Scheitelpunkte und Asymptoten einer Hyperbel zu bestimmen.
Schritt 3
Gleiche die Werte in dieser Hyperbel mit denen der Standardform ab. Die Variable stellt das x-Offset vom Ursprung dar, das y-Offset vom Ursprung, .
Schritt 4
Der Mittelpunkt einer Hyperbel folgt der Form von . Setze die Werte von und ein.
Schritt 5
Schritt 5.1
Ermittle den Abstand vom Mittelpunkt zu einem Brennpunkt der Hyperbel durch Anwendung der folgenden Formel.
Schritt 5.2
Ersetze die Werte von und in der Formel.
Schritt 5.3
Vereinfache.
Schritt 5.3.1
Schreibe als um.
Schritt 5.3.1.1
Benutze , um als neu zu schreiben.
Schritt 5.3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.1.3
Kombiniere und .
Schritt 5.3.1.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.4.2
Forme den Ausdruck um.
Schritt 5.3.1.5
Berechne den Exponenten.
Schritt 5.3.2
Vereinfache den Ausdruck.
Schritt 5.3.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5.3.2.2
Addiere und .
Schritt 6
Schritt 6.1
Der erste Scheitelpunkt einer Hyperbel kann durch Addieren von zu ermittelt werden.
Schritt 6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 6.3
Der zweite Scheitelpunkt einer Hyperbel kann durch Substrahieren von von ermittelt werden.
Schritt 6.4
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 6.5
Die Scheitelpunkte einer Hyperbel folgen der Form . Hyperbeln haben zwei Scheitelpunkte.
Schritt 7
Schritt 7.1
Der erste Brennpunkt einer Hyperbel kann durch Addieren von zu gefunden werden.
Schritt 7.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7.3
Der zweite Brennpunkt einer Hyperbel kann durch Substrahieren von von ermittelt werden.
Schritt 7.4
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7.5
Die Brennpunkt einer Hyperbel folgen der Form . Hyperbeln haben zwei Brennpunkte.
Schritt 8
Schritt 8.1
Ermittle den Wert für den fokalen Parameter der Hyperbel mithilfe der folgenden Formel.
Schritt 8.2
Ersetze die Werte von und in der Formel.
Schritt 8.3
Vereinfache.
Schritt 8.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.3.2
Mutltipliziere mit .
Schritt 8.3.3
Vereinige und vereinfache den Nenner.
Schritt 8.3.3.1
Mutltipliziere mit .
Schritt 8.3.3.2
Potenziere mit .
Schritt 8.3.3.3
Potenziere mit .
Schritt 8.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 8.3.3.5
Addiere und .
Schritt 8.3.3.6
Schreibe als um.
Schritt 8.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 8.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.3.3.6.3
Kombiniere und .
Schritt 8.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 8.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.3.6.4.2
Forme den Ausdruck um.
Schritt 8.3.3.6.5
Berechne den Exponenten.
Schritt 9
Die Asymptoten folgen der Form , da diese Hyperbel sich nach links und rechts öffnet.
Schritt 10
Schritt 10.1
Addiere und .
Schritt 10.2
Kombiniere und .
Schritt 11
Schritt 11.1
Addiere und .
Schritt 11.2
Kombiniere und .
Schritt 12
Diese Hyperbel hat zwei Asymptoten.
Schritt 13
Diese Werte stellen die wichtigen Werte für die graphische Darstellung und Analyse einer Hyperbel dar.
Mittelpunkt:
Scheitelpunkte:
Brennpunkte:
Exzentrizität:
Fokaler Parameter:
Asymptoten: ,
Schritt 14