Trigonometrie Beispiele

x 구하기 cos(x)^2+6cos(x)+4=0
Schritt 1
Ersetze durch .
Schritt 2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.1.3
Subtrahiere von .
Schritt 4.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Faktorisiere aus heraus.
Schritt 4.1.4.2
Schreibe als um.
Schritt 4.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache .
Schritt 5
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 6
Ersetze durch .
Schritt 7
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 8
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wandle die rechte Seite der Gleichung in ihr dezimales Äquivalent um.
Schritt 8.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Berechne .
Schritt 8.4
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 8.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1
Entferne die Klammern.
Schritt 8.5.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.1
Mutltipliziere mit .
Schritt 8.5.2.2
Subtrahiere von .
Schritt 8.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.6.2
Ersetze durch in der Formel für die Periode.
Schritt 8.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.6.4
Dividiere durch .
Schritt 8.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 9
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Wandle die rechte Seite der Gleichung in ihr dezimales Äquivalent um.
Schritt 9.2
Der Wertebereich des Cosinus ist . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 10
Liste alle Lösungen auf.
, für jede ganze Zahl