Trigonometrie Beispiele

x 구하기 (y^2)/12+(x^2)/9=1
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.1.2
Forme den Ausdruck um.
Schritt 3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.3.2
Faktorisiere aus heraus.
Schritt 3.2.1.3.3
Faktorisiere aus heraus.
Schritt 3.2.1.3.4
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.5
Forme den Ausdruck um.
Schritt 3.2.1.4
Kombiniere und .
Schritt 3.2.1.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Mutltipliziere mit .
Schritt 3.2.1.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kombiniere und .
Schritt 5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.1.2
Faktorisiere aus heraus.
Schritt 5.3.1.3
Faktorisiere aus heraus.
Schritt 5.3.2
Mutltipliziere mit .
Schritt 5.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 5.4.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 5.4.3
Ordne den Bruch um.
Schritt 5.5
Ziehe Terme aus der Wurzel heraus.
Schritt 5.6
Kombiniere und .
Schritt 6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.