Trigonometrie Beispiele

x 구하기 sin(x)cos(x)tan(x)=sin(0)^2
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.3
Forme den Ausdruck um.
Schritt 2.1.3
Potenziere mit .
Schritt 2.1.4
Potenziere mit .
Schritt 2.1.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.6
Addiere und .
Schritt 2.1.7
Der genau Wert von ist .
Schritt 2.1.8
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.9
Mutltipliziere mit .
Schritt 2.2
Addiere und .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Schreibe als um.
Schritt 3.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2.3
Plus oder Minus ist .
Schritt 3.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Der genau Wert von ist .
Schritt 3.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 3.6
Subtrahiere von .
Schritt 3.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.7.2
Ersetze durch in der Formel für die Periode.
Schritt 3.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.7.4
Dividiere durch .
Schritt 3.8
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl