Trigonometrie Beispiele

x 구하기 tan(2x+pi/6)=7.57
Schritt 1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Subtrahiere von .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Dividiere durch .
Schritt 5
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Addiere und .
Schritt 6.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2.2
Subtrahiere von .
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.2
Dividiere durch .
Schritt 6.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Dividiere durch .
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 9
Führe und zu zusammen.
, für jede Ganzzahl