Trigonometrie Beispiele

x 구하기 cos(x/2) = square root of (1+cos(67.5))/2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Der genau Wert von ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe um als einen Winkel, für den die Werte der sechs trigonometrischen Funktionen bekannt sind, dividiert durch .
Schritt 1.1.2
Wende die Halbwinkelformel für den Kosinus an.
Schritt 1.1.3
Ändere das zu , da der Kosinus im ersten Quadranten positiv ist.
Schritt 1.1.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.1.4.2
Der genau Wert von ist .
Schritt 1.1.4.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.1.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.4.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.1.4.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.6.1
Mutltipliziere mit .
Schritt 1.1.4.6.2
Mutltipliziere mit .
Schritt 1.1.4.7
Schreibe als um.
Schritt 1.1.4.8
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.8.1
Schreibe als um.
Schritt 1.1.4.8.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.6
Schreibe als um.
Schritt 1.7
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Schreibe als um.
Schritt 1.7.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne .
Schritt 4
Multipliziere beide Seiten der Gleichung mit .
Schritt 5
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.2
Forme den Ausdruck um.
Schritt 5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 6
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 7.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.1.2
Forme den Ausdruck um.
Schritt 7.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1
Subtrahiere von .
Schritt 7.2.2.1.2
Mutltipliziere mit .
Schritt 8
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 8.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.5
Mutltipliziere mit .
Schritt 9
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede ganze Zahl