Trigonometrie Beispiele

x 구하기 cos(3x-pi/3)=( Quadratwurzel von 2)/2
Schritt 1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Mutltipliziere mit .
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.4.4
Mutltipliziere mit .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Bringe auf die linke Seite von .
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 3.6.3
Addiere und .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Mutltipliziere mit .
Schritt 4.3.2.2
Mutltipliziere mit .
Schritt 5
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Kombiniere und .
Schritt 6.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Mutltipliziere mit .
Schritt 6.1.3.2
Subtrahiere von .
Schritt 6.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 6.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.1
Mutltipliziere mit .
Schritt 6.2.4.2
Mutltipliziere mit .
Schritt 6.2.4.3
Mutltipliziere mit .
Schritt 6.2.4.4
Mutltipliziere mit .
Schritt 6.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.6.1
Mutltipliziere mit .
Schritt 6.2.6.2
Bringe auf die linke Seite von .
Schritt 6.2.6.3
Addiere und .
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.2
Dividiere durch .
Schritt 6.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.3.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.2.1
Mutltipliziere mit .
Schritt 6.3.3.2.2
Mutltipliziere mit .
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl