Trigonometrie Beispiele

x 구하기 sin(x+pi/4)=( Quadratwurzel von 2)/2
Schritt 1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3
Subtrahiere von .
Schritt 3.4
Dividiere durch .
Schritt 4
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.1.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Kombiniere und .
Schritt 5.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.1.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Bringe auf die linke Seite von .
Schritt 5.1.3.2
Subtrahiere von .
Schritt 5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.3
Subtrahiere von .
Schritt 5.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Faktorisiere aus heraus.
Schritt 5.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.2.1
Faktorisiere aus heraus.
Schritt 5.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2.3
Forme den Ausdruck um.
Schritt 6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.4
Dividiere durch .
Schritt 7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl