Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Vertausche die Variablen.
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.2
Forme den Ausdruck um.
Schritt 2.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 2.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 2.3.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.3.5
Die Primfaktoren von sind .
Schritt 2.3.5.1
hat Faktoren von und .
Schritt 2.3.5.2
hat Faktoren von und .
Schritt 2.3.5.3
hat Faktoren von und .
Schritt 2.3.6
Multipliziere .
Schritt 2.3.6.1
Mutltipliziere mit .
Schritt 2.3.6.2
Mutltipliziere mit .
Schritt 2.3.6.3
Mutltipliziere mit .
Schritt 2.3.7
Der Teiler von ist selbst.
occurs time.
Schritt 2.3.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.3.9
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 2.4.1
Multipliziere jeden Term in mit .
Schritt 2.4.2
Vereinfache die linke Seite.
Schritt 2.4.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.4.2.2
Kombiniere und .
Schritt 2.4.2.3
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.3.2
Forme den Ausdruck um.
Schritt 2.4.3
Vereinfache die rechte Seite.
Schritt 2.4.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.4.3.2
Kürze den gemeinsamen Faktor von .
Schritt 2.4.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.3.2.2
Forme den Ausdruck um.
Schritt 2.5
Löse die Gleichung.
Schritt 2.5.1
Schreibe die Gleichung als um.
Schritt 2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2
Vereinfache die linke Seite.
Schritt 2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.1.2
Dividiere durch .
Schritt 3
Replace with to show the final answer.
Schritt 4
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 4.2.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2
Dividiere durch .
Schritt 4.3
Berechne .
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Ändere das Vorzeichen des Exponenten durch Umschreiben der Basis als ihren Kehrwert.
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Forme den Ausdruck um.
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .