Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 4
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 5
Vertausche die Variablen.
Schritt 6
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 6.3
Vereinfache beide Seiten der Gleichung.
Schritt 6.3.1
Vereinfache die linke Seite.
Schritt 6.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 6.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.2
Forme den Ausdruck um.
Schritt 6.3.2
Vereinfache die rechte Seite.
Schritt 6.3.2.1
Stelle die Faktoren in um.
Schritt 6.4
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 6.5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 6.6
Schreibe die Gleichung als um.
Schritt 7
Replace with to show the final answer.
Schritt 8
Schritt 8.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 8.2
Berechne .
Schritt 8.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 8.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 8.2.3
Kürze den gemeinsamen Faktor von .
Schritt 8.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.3.2
Forme den Ausdruck um.
Schritt 8.2.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 8.3
Berechne .
Schritt 8.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 8.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 8.3.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 8.3.4
Kürze den gemeinsamen Faktor von .
Schritt 8.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.4.2
Dividiere durch .
Schritt 8.3.5
Der natürliche Logarithmus von ist .
Schritt 8.3.6
Mutltipliziere mit .
Schritt 8.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .