Trigonometrie Beispiele

Ermittle die Umkehrfunktion 10cos(2x)+10
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Dividiere durch .
Schritt 2.4
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.1.2
Dividiere durch .
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Faktorisiere aus heraus.
Schritt 4.2.3.2
Faktorisiere aus heraus.
Schritt 4.2.3.3
Faktorisiere aus heraus.
Schritt 4.2.3.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.4.1
Faktorisiere aus heraus.
Schritt 4.2.3.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.4.3
Forme den Ausdruck um.
Schritt 4.2.3.4.4
Dividiere durch .
Schritt 4.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Subtrahiere von .
Schritt 4.2.4.2
Addiere und .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.3.1.2
Kombiniere und .
Schritt 4.3.3.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.3.1.4
Mutltipliziere mit .
Schritt 4.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.2
Forme den Ausdruck um.
Schritt 4.3.3.3
Die Funktionen Kosinus und Arkuskosinus sind Inverse.
Schritt 4.3.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.4.2
Forme den Ausdruck um.
Schritt 4.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Addiere und .
Schritt 4.3.4.2
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .