Trigonometrie Beispiele

Ermittle die Umkehrfunktion (n-2)*180
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.3
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.2
Dividiere durch .
Schritt 4.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Addiere und .
Schritt 4.2.4.2
Addiere und .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Subtrahiere von .
Schritt 4.3.3.2
Addiere und .
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Forme den Ausdruck um.
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .