Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Faktorisiere jeden Term.
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Faktorisiere aus heraus.
Schritt 3.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.3.2
Entferne die Klammern.
Schritt 3.3.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.4.1
Multipliziere jeden Term in mit .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Forme den Ausdruck um.
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Wende das Distributivgesetz an.
Schritt 3.4.3.2
Bringe auf die linke Seite von .
Schritt 3.5
Löse die Gleichung.
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.3.1
Teile jeden Ausdruck in durch .
Schritt 3.5.3.2
Vereinfache die linke Seite.
Schritt 3.5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.3.2.1.2
Dividiere durch .
Schritt 3.5.3.3
Vereinfache die rechte Seite.
Schritt 3.5.3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.3.3.1.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Schritt 5.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.3
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.5
Forme den Ausdruck um.
Schritt 5.2.3.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.3.2
Forme den Ausdruck um.
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.4.1
Addiere und .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.2.2
Faktorisiere aus heraus.
Schritt 5.3.3.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.1.2.4
Forme den Ausdruck um.
Schritt 5.3.3.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.3.3.2.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.2.2.2
Faktorisiere aus heraus.
Schritt 5.3.3.2.2.3
Faktorisiere aus heraus.
Schritt 5.3.3.2.2.4
Faktorisiere aus heraus.
Schritt 5.3.3.2.2.5
Faktorisiere aus heraus.
Schritt 5.3.3.2.2.6
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.2.7
Forme den Ausdruck um.
Schritt 5.3.4
Vereinfache den Nenner.
Schritt 5.3.4.1
Subtrahiere von .
Schritt 5.3.4.2
Addiere und .
Schritt 5.3.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.6
Mutltipliziere mit .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .