Trigonometrie Beispiele

Ermittle die Umkehrfunktion f(x)- Quadratwurzel von 3x-2-1
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Addiere und .
Schritt 4.2.3.2
Addiere und .
Schritt 4.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.5
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Addiere und .
Schritt 4.2.5.2
Addiere und .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Wende das Distributivgesetz an.
Schritt 4.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.2
Forme den Ausdruck um.
Schritt 4.3.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.3.2
Forme den Ausdruck um.
Schritt 4.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Subtrahiere von .
Schritt 4.3.4.2
Addiere und .
Schritt 4.3.4.3
Subtrahiere von .
Schritt 4.3.4.4
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .