Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3.3
Vereinfache jede Seite der Gleichung.
Schritt 3.3.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Vereinfache .
Schritt 3.3.2.1.1
Multipliziere die Exponenten in .
Schritt 3.3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.1.2
Vereinfache.
Schritt 3.4
Löse nach auf.
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.4.2.3.1.1
Faktorisiere aus heraus.
Schritt 3.4.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.4.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.4.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.3.1.2.3
Forme den Ausdruck um.
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Schritt 5.2.3.1
Vereinfache den Zähler.
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.1.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.1.3
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Schreibe als um.
Schritt 5.2.3.1.2.1
Benutze , um als neu zu schreiben.
Schritt 5.2.3.1.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.3.1.2.3
Kombiniere und .
Schritt 5.2.3.1.2.4
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.4.2
Forme den Ausdruck um.
Schritt 5.2.3.1.2.5
Vereinfache.
Schritt 5.2.3.1.3
Wende das Distributivgesetz an.
Schritt 5.2.3.1.4
Mutltipliziere mit .
Schritt 5.2.3.1.5
Mutltipliziere mit .
Schritt 5.2.3.1.6
Faktorisiere aus heraus.
Schritt 5.2.3.1.6.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.6.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.6.3
Faktorisiere aus heraus.
Schritt 5.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.3.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.3
Forme den Ausdruck um.
Schritt 5.2.4
Vereinfache Terme.
Schritt 5.2.4.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.4.2.1
Addiere und .
Schritt 5.2.4.2.2
Addiere und .
Schritt 5.2.4.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.4.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.3.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Faktorisiere aus heraus.
Schritt 5.3.3.1
Faktorisiere aus heraus.
Schritt 5.3.3.2
Faktorisiere aus heraus.
Schritt 5.3.3.3
Faktorisiere aus heraus.
Schritt 5.3.4
Wende das Distributivgesetz an.
Schritt 5.3.5
Kürze den gemeinsamen Faktor von .
Schritt 5.3.5.1
Faktorisiere aus heraus.
Schritt 5.3.5.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.5.3
Forme den Ausdruck um.
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Schritt 5.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.2
Forme den Ausdruck um.
Schritt 5.3.7
Vereinfache durch Substrahieren von Zahlen.
Schritt 5.3.7.1
Subtrahiere von .
Schritt 5.3.7.2
Addiere und .
Schritt 5.3.8
Kombiniere und .
Schritt 5.3.9
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.3.9.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.3.9.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.9.1.2
Forme den Ausdruck um.
Schritt 5.3.9.2
Dividiere durch .
Schritt 5.3.10
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .